Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Genes (Basel) ; 14(11)2023 Nov 06.
Article in English | MEDLINE | ID: mdl-38002989

ABSTRACT

The CLAVATA3/EMBRYO-SURROUNDING REGION (CLE) genes encode signaling peptides that play important roles in various developmental and physiological processes. However, the systematic identification and characterization of CLE genes in foxtail millet (Setaria italica L.) remain limited. In this study, we identified and characterized 41 SiCLE genes in the foxtail millet genome. These genes were distributed across nine chromosomes and classified into four groups, with five pairs resulting from gene duplication events. SiCLE genes within the same phylogenetic group shared similar gene structure and motif patterns, while 34 genes were found to be single-exon genes. All SiCLE peptides harbored the conserved C-terminal CLE domain, with highly conserved positions in the CLE core sequences shared among foxtail millet, Arabidopsis, rice, and maize. The SiCLE genes contained various cis-elements, including five plant hormone-responsive elements. Notably, 34 SiCLE genes possessed more than three types of phytohormone-responsive elements on their promoters. Comparative analysis revealed higher collinearity between CLE genes in maize and foxtail millet, which may be because they are both C4 plants. Tissue-specific expression patterns were observed, with genes within the same group exhibiting similar and specific expression profiles. SiCLE32 and SiCLE41, classified in Group D, displayed relatively high expression levels in all tissues except panicles. Most SiCLE genes exhibited low expression levels in young panicles, while SiCLE6, SiCLE24, SiCLE25, and SiCLE34 showed higher expression in young panicles, with SiCLE24 down-regulated during later panicle development. Greater numbers of SiCLE genes exhibited higher expression in roots, with SiCLE7, SiCLE22, and SiCLE36 showing the highest levels and SiCLE36 significantly down-regulated after abscisic acid (ABA) treatment. Following treatments with ABA, 6-benzylaminopurine (6-BA), and gibberellic acid 3 (GA3), most SiCLE genes displayed down-regulation followed by subsequent recovery, while jasmonic acid (JA) and indole-3-acetic acid (IAA) treatments led to upregulation at 30 min in leaves. Moreover, identical hormone treatments elicited different expression patterns of the same genes in leaves and stems. This comprehensive study enhances our understanding of the SiCLE gene family and provides a foundation for further investigations into the functions and evolution of SiCLE genes in foxtail millet.


Subject(s)
Setaria Plant , Setaria Plant/genetics , Setaria Plant/metabolism , Phylogeny , Gene Duplication , Plant Growth Regulators/metabolism , Abscisic Acid/metabolism , Peptides/genetics
2.
iScience ; 26(11): 108114, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37867955

ABSTRACT

Thyroid nodules are a common disease, and fine needle aspiration cytology (FNAC) is the primary method to assess their malignancy. For the diagnosis of follicular thyroid nodules, however, FNAC has limitations. FNAC can classify them only as Bethesda IV nodules, leaving their exact malignant status and pathological type undetermined. This imprecise diagnosis creates difficulties in selecting the follow-up treatment. In this retrospective study, we collected ultrasound (US) image data of Bethesda IV thyroid nodules from 2006 to 2022 from five hospitals. Then, US image-based artificial intelligence (AI) models were trained to identify the specific category of Bethesda IV thyroid nodules. We tested the models using two independent datasets, and the best AI model achieved an area under the curve (AUC) between 0.90 and 0.95, demonstrating its potential value for clinical application. Our research findings indicate that AI could change the diagnosis and management process of Bethesda IV thyroid nodules.

3.
Article in English | MEDLINE | ID: mdl-36315536

ABSTRACT

In this article, we focus on a new and challenging decentralized machine learning paradigm in which there are continuous inflows of data to be addressed and the data are stored in multiple repositories. We initiate the study of data-decentralized class-incremental learning (DCIL) by making the following contributions. First, we formulate the DCIL problem and develop the experimental protocol. Second, we introduce a paradigm to create a basic decentralized counterpart of typical (centralized) CIL approaches, and as a result, establish a benchmark for the DCIL study. Third, we further propose a decentralized composite knowledge incremental distillation (DCID) framework to transfer knowledge from historical models and multiple local sites to the general model continually. DCID consists of three main components, namely, local CIL, collaborated knowledge distillation (KD) among local models, and aggregated KD from local models to the general one. We comprehensively investigate our DCID framework by using a different implementation of the three components. Extensive experimental results demonstrate the effectiveness of our DCID framework. The source code of the baseline methods and the proposed DCIL is available at https://github.com/Vision-Intelligence-and-Robots-Group/DCIL.

4.
Rice (N Y) ; 15(1): 49, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36181551

ABSTRACT

BACKGROUND: Since its development and wide adoption in China, hybrid rice has reached the yield plateau for more than three decades. To understand the genetic basis of heterosis in rice and accelerate hybrid rice breeding, the yield performances of the elite rice hybrid, Quan-you-si-miao (QYSM) were genetically dissected by whole-genome sequencing, large-scale phenotyping of 1061 recombined inbred lines (RILs) and 1061 backcross F1 (BCF1) hybrids derived from QYSM's parents across three environments and gene-based analyses. RESULTS: Genome-wide scanning of 13,847 segregating genes between the parents and linkage mapping based on 855 bins across the rice genome and phenotyping experiments across three environments resulted in identification of large numbers of genes, 639 main-effect QTLs (M-QTLs) and 2736 epistatic QTLs with significant additive or heterotic effects on the trait performances of the combined population consisting of RILs and BCF1 hybrids, most of which were environment-specific. The 324 M-QTLs affecting yield components included 32.7% additive QTLs, 38.0% over-dominant or dominant ones with strong and positive effects and 29.3% under-dominant or incomplete recessive ones with significant negative heterotic effects. 63.6% of 1403 genes with allelic introgression from subspecies japonica/Geng in the parents of QYSM may have contributed significantly to the enhanced yield performance of QYSM. CONCLUSIONS: The parents of QYSM and related rice hybrids in China carry disproportionally more additive and under-dominant genes/QTLs affecting yield traits. Further focus in indica/Xian rice breeding should shift back to improving inbred varieties, while breaking yield ceiling of Xian hybrids can be achieved by one or combinations of the three strategies: (1) by pyramiding favorable alleles of additive genes, (2) by eliminating or minimizing under-dominant loci, and (3) by pyramiding overdominant/dominant genes polymorphic, particularly those underlying inter-subspecific heterosis.

5.
Article in English | MEDLINE | ID: mdl-35329019

ABSTRACT

The COVID-19 pandemic that began at the end of 2019 has caused hundreds of millions of infections and millions of deaths worldwide. COVID-19 posed a threat to human health and profoundly impacted the global economy and people's lifestyles. The United States is one of the countries severely affected by the disease. Evidence shows that the spread of COVID-19 was significantly underestimated in the early stages, which prevented governments from adopting effective interventions promptly to curb the spread of the disease. This paper adopts a Bayesian hierarchical model to study the under-reporting of COVID-19 at the state level in the United States as of the end of April 2020. The model examines the effects of different covariates on the under-reporting and accurate incidence rates and considers spatial dependency. In addition to under-reporting (false negatives), we also explore the impact of over-reporting (false positives). Adjusting for misclassification requires adding additional parameters that are not directly identified by the observed data. Informative priors are required. We discuss prior elicitation and include R functions that convert expert information into the appropriate prior distribution.


Subject(s)
COVID-19 , Bayes Theorem , COVID-19/epidemiology , Humans , Pandemics/prevention & control , United States/epidemiology
6.
J Thorac Cardiovasc Surg ; 164(6): e313-e329, 2022 12.
Article in English | MEDLINE | ID: mdl-34507817

ABSTRACT

OBJECTIVE: Calcified aortic valvular disease is known as an inflammation-related process related to force. The purpose of this study was to determine whether micromechanical force could induce valve calcification of porcine valvular interstitial cells and to examine the role of integrin αvß3 in valvular calcification by using a novel method: magnetic twisting cytometry. METHODS: Porcine valvular interstitial cells were cultured in vitro, and micromechanical force was applied to porcine valvular interstitial cells using magnetic twisting cytometry. Changes in calcification-related factors osteopontin and RUNX2 were detected. By using the calcification medium, the optimal magnetic twisting cytometry parameters for inducing valvular interstitial cell calcification were determined, and a magnetic twisting cytometry calcification promotion model was established. The role of αvß3 in calcification was studied by using αvß3 antagonists to block the function of αvß3. RESULTS: Reverse transcription polymerase chain reaction assays showed that the expression of osteopontin was enhanced 30 minutes after 25G-1Hz 5 minutes of stimulation. Western blotting assays showed that the expression of osteopontin and RUNX2 was upregulated 24 hours after 25G-1Hz 5 minutes of stimulation. The optimal magnetic twisting cytometry parameter for inducing porcine valvular interstitial cell calcification was 25G-2Hz for 10 minutes. The expression of osteopontin and RUNX2 decreased significantly after the addition of αvß3 antagonist. Clinically, patients with bicuspid aortic valves had high expression of RUNX2 and ß3 in the aortic valve, and ß3 significantly correlated with RUNX2. CONCLUSIONS: By using magnetic twisting cytometry, we established a porcine valvular interstitial cell calcification model by micromechanical force stimulation and obtained the optimal parameters. Integrin αvß3 plays a key role in the aortic valve calcification process.


Subject(s)
Aortic Valve Stenosis , Calcinosis , Swine , Animals , Aortic Valve/metabolism , Aortic Valve Stenosis/etiology , Aortic Valve Stenosis/metabolism , Calcinosis/metabolism , Core Binding Factor Alpha 1 Subunit/genetics , Core Binding Factor Alpha 1 Subunit/metabolism , Osteopontin/metabolism , Integrin alphaVbeta3/metabolism , Cells, Cultured
7.
J Hazard Mater ; 406: 124329, 2021 03 15.
Article in English | MEDLINE | ID: mdl-33158658

ABSTRACT

Nitrous oxide (N2O) emission is an environmental problem related to composting. Recently, the electric field-assisted aerobic composting process has been found to be effective for enhancing compost maturity and mitigating N2O emission. However, the insertion of electrodes into the compost pile causes electrode erosion and inconvenience in practical operation. In this study, a novel alternating magnetic field-assisted aerobic composting (AMFAC) process was tested by applying an alternating magnetic field (AMF) to a conventional aerobic composting (CAC) process. The total N2O emission of the AMFAC process was reduced by 39.8% as compared with that of the CAC process. Furthermore, the results demonstrate that the AMF weakened the expressions of the amoA, narG, and nirS functional genes (the maximum reductions were 96%, 83.7%, and 95.5%, respectively), whereas it enhanced the expression of the nosZ functional gene by a maximum factor of 36.5 as compared with that in CAC. A correlation analysis revealed that the nitrification and denitrification processes for N2O emission were suppressed in AMFAC, the main source of N2O emission of which was denitrification. The findings imply that AMFAC is an effective strategy for the reduction of N2O emission during aerobic composting.


Subject(s)
Composting , Animals , Chickens , Denitrification , Magnetic Fields , Manure , Nitrification , Nitrous Oxide
8.
J Card Surg ; 35(4): 920-922, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32092181

ABSTRACT

Cardiac mass is rare in the clinic and can be primary or secondary. It is quite rare to find a mass only on the cardiac surface. Today we report a patient with a cardiac mass grown on the cardiac surface and also had a coronary aneurysm combined a coronary fistula, pathology examination showed that the mass was not a tumor but an aneurysm with thrombosis. This is the first time that a primary thrombus discovered on the surface of the heart.


Subject(s)
Arterio-Arterial Fistula/surgery , Coronary Aneurysm/surgery , Heart Diseases/surgery , Thrombosis/surgery , Aged , Arterio-Arterial Fistula/complications , Arterio-Arterial Fistula/diagnostic imaging , Arterio-Arterial Fistula/pathology , Cardiovascular Surgical Procedures , Coronary Aneurysm/complications , Coronary Aneurysm/diagnostic imaging , Coronary Aneurysm/pathology , Coronary Angiography , Heart Diseases/complications , Heart Diseases/diagnostic imaging , Heart Diseases/pathology , Humans , Male , Rare Diseases , Severity of Illness Index , Thrombosis/complications , Thrombosis/diagnostic imaging , Thrombosis/pathology , Tomography, X-Ray Computed , Treatment Outcome
9.
ACS Appl Mater Interfaces ; 10(37): 31580-31585, 2018 Sep 19.
Article in English | MEDLINE | ID: mdl-30136570

ABSTRACT

One promising route toward encoding information is to utilize the two stable electronic states of a spin crossover molecule. Although this property is clearly manifested in transport across single molecule junctions, evidence linking charge transport across a solid-state device to the molecular film's spin state has thus far remained indirect. To establish this link, we deploy materials-centric and device-centric operando experiments involving X-ray absorption spectroscopy. We find a correlation between the temperature dependencies of the junction resistance and the Fe spin state within the device's [Fe(H2B(pz)2)2(NH2-phen)] molecular film. We also factually observe that the Fe molecular site mediates charge transport. Our dual operando studies reveal that transport involves a subset of molecules within an electronically heterogeneous spin crossover film. Our work confers an insight that substantially improves the state-of-the-art regarding spin crossover-based devices, thanks to a methodology that can benefit device studies of other next-generation molecular compounds.

10.
ACS Nano ; 12(4): 3280-3286, 2018 04 24.
Article in English | MEDLINE | ID: mdl-29565560

ABSTRACT

Magnetic molecules have the potential to be used as building blocks for bits in quantum computers. The spin states of the magnetic ion in the molecule can be represented by the effective spin Hamiltonian describing the zero field splitting (ZFS) of the magnetic states. We determined the ZFS of mechanically flexible metal-chelate molecules (Co, Ni, and Cu as metal ions) adsorbed on Cu2N/Cu(100) by inelastic tunneling spectroscopy at temperatures down to 30 mK. When moving the tip toward the molecule, the tunneling current abruptly jumps to higher values, indicating the sudden deformation of the molecule bridging the tunneling junction. Hand in hand with the formation of the contact, an abrupt change of the ZFS occurs. This work also implies that ZFS expected in mechanical break junctions can drastically deviate from that of adsorbed molecules probed by other techniques.

11.
J Pers Soc Psychol ; 112(2): 186-200, 2017 02.
Article in English | MEDLINE | ID: mdl-28095014

ABSTRACT

The ability to choose should let people create more enjoyable experiences. However, in a set of 5 studies, people who chose repeatedly during ongoing consumption exhibited a greater drop in enjoyment compared with those who received a series of random selections from the same set of liked stimuli. Process evidence indicated that choosing increased satiation because it triggered overall reflections on the repetitive nature of the ongoing consumption experience. Moderating evidence also supported our theoretical account as differences in satiation disappeared when nonchoosers were explicitly cued to think about repetition in the general sense, or when choosers made all of their choices before the onset of repeated consumption. Additional measures and analyses further established that choice set size, the difficulty of choosing, and other alternative accounts could not fully explain the pattern of effects. The paper closes with a discussion of the implications of these findings for understanding the causes of satiation, the consequences of choosing, and improving individuals' experiences. (PsycINFO Database Record


Subject(s)
Choice Behavior , Pleasure , Satiation , Adult , Humans , Young Adult
12.
Beilstein J Nanotechnol ; 7: 126-37, 2016.
Article in English | MEDLINE | ID: mdl-26925361

ABSTRACT

A series of 2,2'-bipyrimidine-bridged dinuclear lanthanide complexes with the general formula [Ln(tmhd)3]2bpm (tmhd = 2,2,6,6-tetramethyl-3,5-heptanedionate, bpm = 2,2'-bipyrimidine, Ln = Gd(III), 1; Tb(III), 2; Dy(III), 3; Ho(III), 4 and Er(III), 5) has been synthesized and characterized. Sublimation of [Tb(tmhd)3]2bpm onto a Au(111) surface leads to the formation of a homogeneous film with hexagonal pattern, which was studied by scanning tunneling microscopy (STM). The bulk magnetic properties of all complexes have been studied comprehensively. The dynamic magnetic behavior of the Dy(III) and Er(III) compounds clearly exhibits single molecule magnet (SMM) characteristics with an energy barrier of 97 and 25 K, respectively. Moreover, micro-SQUID measurements on single crystals confirm their SMM behavior with the presence of hysteresis loops.

13.
Nat Mater ; 14(10): 981-4, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26191660

ABSTRACT

Molecular semiconductors may exhibit antiferromagnetic correlations well below room temperature. Although inorganic antiferromagnetic layers may exchange bias single-molecule magnets, the reciprocal effect of an antiferromagnetic molecular layer magnetically pinning an inorganic ferromagnetic layer through exchange bias has so far not been observed. We report on the magnetic interplay, extending beyond the interface, between a cobalt ferromagnetic layer and a paramagnetic organic manganese phthalocyanine (MnPc) layer. These ferromagnetic/organic interfaces are called spinterfaces because spin polarization arises on them. The robust magnetism of the Co/MnPc spinterface stabilizes antiferromagnetic ordering at room temperature within subsequent MnPc monolayers away from the interface. The inferred magnetic coupling strength is much larger than that found in similar bulk, thin or ultrathin systems. In addition, at lower temperature, the antiferromagnetic MnPc layer induces an exchange bias on the Co film, which is magnetically pinned. These findings create new routes towards designing organic spintronic devices.

14.
Nat Commun ; 6: 6179, 2015 Feb 04.
Article in English | MEDLINE | ID: mdl-25649750

ABSTRACT

Recently, broken symmetry effect induced edge states in two-dimensional electronic systems have attracted great attention. However, whether edge states may exist in strongly correlated oxides is not yet known. In this work, using perovskite manganites as prototype systems, we demonstrate that edge states do exist in strongly correlated oxides. Distinct appearance of ferromagnetic metallic phase is observed along the edge of manganite strips by magnetic force microscopy. The edge states have strong influence on the transport properties of the strips, leading to higher metal-insulator transition temperatures and lower resistivity in narrower strips. Model calculations show that the edge states are associated with the broken symmetry effect of the antiferromagnetic charge-ordered states in manganites. Besides providing a new understanding of the broken symmetry effect in complex oxides, our discoveries indicate that novel edge state physics may exist in strongly correlated oxides beyond the current two-dimensional electronic systems.

15.
Beilstein J Nanotechnol ; 6: 2412-6, 2015.
Article in English | MEDLINE | ID: mdl-26733215

ABSTRACT

We deposited a volatile lanthanide complex, tris(2,2,6,6-tetramethyl-3,5-heptanedionato)terbium(III), onto metal surfaces of Cu(111), Ag(111) and Au(111) in vacuum and observed well-ordered sub-monolayer films with low temperature (5 K) scanning tunneling microscopy. The films show a distorted three-fold symmetry with a commensurate structure. Scanning tunneling spectroscopy reveals molecular orbitals delocalized on the ligands of the molecule. Our results imply that this complex can be transferred onto the metal substrates without molecular decomposition or contamination of the surface. This new rare-earth-based class of molecules broadens the choice of molecular magnets to study with scanning tunneling microscopy.

SELECTION OF CITATIONS
SEARCH DETAIL