Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 22(22)2022 Nov 20.
Article in English | MEDLINE | ID: mdl-36433573

ABSTRACT

The objective of the proposed human-machine cooperation (HMC) workstation is to both rapidly detect calcium-based fish bones in masses of minced fish floss and visually guide operators in approaching and removing the detected fish bones by hand based on the detection of fingernails or plastic-based gloves. Because vibration is a separation mechanism that can prevent absorption or scattering in thick fish floss for UV fluorescence detection, the design of the HMC workstation included a vibration unit together with an optical box and display screens. The system was tested with commonly used fish (swordfish, salmon, tuna, and cod) representing various cooking conditions (raw meat, steam-cooked meat, and fish floss), their bones, and contaminating materials such as derived from gloves made of various types of plastic (polyvinylchloride, emulsion, and rubber) commonly used in the removal of fish bones. These aspects were each investigated using the spectrum analyzer and the optical box to obtain and analyze the fluorescence spectra and images. The filter was mounted on a charge-coupled device, and its transmission-wavelength window was based on the characteristic band for fish bones observed in the spectra. Gray-level AI algorithm was utilized to generate white marker rectangles. The vibration unit supports two mechanisms of air and downstream separation to improve the imaging screening of fish bones inside the considerable flow of fish floss. Notably, under 310 nm ultraviolet B (UVB) excitation, the fluorescence peaks of the raw fillets, steam-cooked meat, and fish floss were observed at for bands at longer wavelengths (500-600 nm), whereas those of the calcium and plastic materials occurred in shorter wavelength bands (400-500 nm). Perfect accuracy of 100% was achieved with the detection of 20 fish bones in 2 kg of fish floss, and the long test time of around 10-12 min results from the manual removal of these fish bones.


Subject(s)
Calcium , Vibration , Animals , Humans , Fluorescence , Steam , Fishes , Technology , Plastics
2.
Biosensors (Basel) ; 11(10)2021 Sep 30.
Article in English | MEDLINE | ID: mdl-34677319

ABSTRACT

Infections of orchids by the Odontoglossum ringspot virus or Cymbidium mosaic virus cause orchid disfiguration and are a substantial source of economic loss for orchid farms. Although immunoassays can identify these infections, immunoassays are expensive, time consuming, and labor consuming and limited to sampling-based testing methods. This study proposes a noncontact inspection platform that uses a spectrometer and Android smartphone. When orchid leaves are illuminated with a handheld optical probe, the Android app based on the Internet of Things and artificial intelligence can display the measured florescence spectrum and determine the infection status within 3 s by using an algorithm hosted on a remote server. The algorithm was trained on optical data and the results of polymerase chain reaction assays. The testing accuracy of the algorithm was 89%. The area under the receiver operating characteristic curve was 91%; thus, the platform with the algorithm was accurate and convenient for infection screening in orchids.


Subject(s)
Orchidaceae , Smartphone , Artificial Intelligence , Plant Diseases/virology , Polymerase Chain Reaction , Potexvirus , Tobamovirus
SELECTION OF CITATIONS
SEARCH DETAIL
...