Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters










Publication year range
1.
Angew Chem Int Ed Engl ; 63(20): e202401498, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38499469

ABSTRACT

Herein, multiple types of chiral Os(II) complexes have been designed to address the appealing yet challenging asymmetric C(sp3)-H functionalization, among which the Os(II)/Salox species is found to be the most efficient for precise stereocontrol in realizing the asymmetric C(sp3)-H amidation. As exemplified by the enantioenriched pyrrolidinone synthesis, such tailored Os(II)/Salox catalyst efficiently enables an intramolecular site-/enantioselective C(sp3)-H amidation in the γ-position of dioxazolone substrates, in which benzyl, propargyl and allyl groups bearing various substituted forms are well compatible, affording the corresponding chiral γ-lactam products with good er values (up to 99 : 1) and diverse functionality (>35 examples). The unique performance advantage of the developed chiral Os(II)/Salox system in terms of the catalytic energy profile and the chiral induction has been further clarified by integrated experimental and computational studies.

2.
Angew Chem Int Ed Engl ; 63(23): e202402038, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38412055

ABSTRACT

A novel enantioselective Tsuji-Trost-type cross coupling reaction between gem-difluorinated cyclopropanes and N-unprotected amino acid esters enabled by synergistic Pd/Ni/chiral aldehyde catalysis is presented herein. This transformation streamlined the diversity-oriented synthesis (DOS) of optically active α-quaternary α-amino acid esters bearing a linear 2-fluoroallylic motif, which served as an appealing platform for the construction of other valuable enantioenriched compounds. The key intermediates were confirmed by HRMS detection, while DFT calculations revealed that the excellent enantioselectivity was attributed to the stabilizing non-covalent interactions between the Pd(II)-π-fluoroallyl species and the Ni(II)-Schiff base complex.

3.
Int J Dermatol ; 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38345734

ABSTRACT

The NLRP3 inflammasome, a complex consisting of the nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain-containing protein 3, has emerged as a critical mediator of pathological inflammation and a significant therapeutic target for various inflammatory diseases. Psoriasis, a chronic inflammatory skin condition without a definitive cure, has shown promising results in animal models through the inhibition of the NLRP3 inflammasome. This review aims to explore the development of the NLRP3 inflammasome in psoriasis and the molecular mechanisms responsible for its inhibition by natural products and small molecules currently being developed for psoriasis treatment. Furthermore, we are examining clinical trials using agents that block the NLRP3 pathway for the treatment of psoriasis. This study is timely to provide a new perspective on managing psoriasis.

4.
Biotechnol J ; 19(1): e2300395, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38180295

ABSTRACT

The mammalian cell culture process is a key step in commercial therapeutic protein production and needs to be monitored and controlled due to its complexity. Raman spectroscopy has been reported for cell culture process monitoring by analysis of many important parameters. However, studies on in-line Raman monitoring of the cell culture process were mainly conducted on small or pilot scale. Developing in-line Raman analytical methods for commercial-scale cell culture process monitoring is more challenging. In this study, an in-line Raman analytical method was developed for monitoring glucose, lactate, and viable cell density (VCD) in the Chinese hamster ovary (CHO) cell culture process during commercial production of biosimilar adalimumab (1500 L). The influence of different Raman measurement channels was considered to determine whether to merge data from different channels for model development. Raman calibration models were developed and optimized, with minimum root mean square error of prediction of 0.22 g L-1 for glucose in the range of 1.66-3.53 g L-1 , 0.08 g L-1 for lactate in the range of 0.15-1.19 g L-1 , 0.31 E6 cells mL-1 for VCD in the range of 0.96-5.68 E6 cells mL-1 on test sets. The developed analytical method can be used for cell culture process monitoring during manufacturing and meets the analytical purpose of this study. Further, the influence of the number of batches used for model calibration on model performance was also studied to determine how many batches are needed basically for method development. The proposed Raman analytical method development strategy and considerations will be useful for monitoring of similar bioprocesses.


Subject(s)
Bioreactors , Cell Culture Techniques , Cricetinae , Animals , Cricetulus , CHO Cells , Cell Culture Techniques/methods , Lactic Acid/metabolism , Spectrum Analysis, Raman/methods , Glucose/metabolism , Batch Cell Culture Techniques/methods
5.
Int J Food Microbiol ; 411: 110518, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38101189

ABSTRACT

The generation of multicellular behavior enhances the stress adaptability, antibiotic resistance, and pathogenic potential of Salmonella enterica serovar Typhimurium (S. Typhimurium), which is challenging for its prevention and control. Therefore, determination of the mechanism of multicellular behavior development is urgently required. Accordingly, this study investigated BolA, a transcription factor that promotes bacterial survival under different stresses. We found that BolA promoted the generation of multicellular behavior. Furthermore, transcriptome analysis revealed that BolA affected the expression of numerous genes, including biofilm formation and motility-related genes. In terms of biofilm formation, compared with the wild-type strain, bolA overexpression (269BolA+) increased the extracellular matrix content (extracellular polysaccharide, extracellular protein, and extracellular DNA (eDNA) by upregulating gene expression, ultimately increasing the biofilm formation ability by 2.56 times. For motility, bolA overexpression inhibited the expression of flagella synthesis genes, resulting in a 91.15 % decrease in motility compared with the wild-type (6 h). Further mechanistic analysis demonstrated that BolA affected the expression of the C-di-GMP pathway genes yeaJ and yhjH, which influenced the generation of multicellular behavior. In terms of biofilms, the extracellular polysaccharide content of 269BolA + ∆Yeaj (bolA overexpression and yeaJ deletion) was reduced by 89.91 % compared with 269BolA+, resulting in a 71.1 % reduction in biofilm forming ability. The motility of the 269∆BolA∆Yhjh (bolA/yhjH double deletion) strain was significantly decreased compared with that of 269∆BolA. Finally, the LacZ gene reporting showed that BolA promoted and inhibited the expression of yeaJ and yhjH, respectively. In conclusion, BolA mainly improves the content of extracellular polysaccharide by promoting the expression of yeaJ, thus enhancing the formation of biofilms. BolA also restricts flagellar synthesis by inhibiting yhjH expression, therefore reducing motility, ultimately promoting multicellular behavior arises. These findings lay a theoretical foundation for the prevention and control of S. Typhimurium.


Subject(s)
Biofilms , Cyclic GMP , Cyclic GMP/metabolism , Salmonella typhimurium/physiology , Polysaccharides/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial
6.
Microorganisms ; 11(8)2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37630565

ABSTRACT

Salmonella enterica subsp. enterica serovar Typhimurium (S. typhimurium) is an important zoonotic pathogen with important public health significance. To understand S. typhimurium's epidemiological characteristics in China, multi-locus sequence typing, biofilm-forming ability, antimicrobial susceptibility testing, and resistant genes of isolates from different regions and sources (human, food) were investigated. Among them, ST34 accounted for 82.4% (243/295), with ST19 ranking second (15.9%; 47/295). ST34 exhibited higher resistance levels than ST19 (p < 0.05). All colistin, carbapenem, and ciprofloxacin-resistant strains were ST34, as were most cephalosporin-resistant strains (88.9%; 32/36). Overall, 91.4% (222/243) ST34 isolates were shown to have multidrug resistance (MDR), while 53.2% (25/47) ST19 isolates were (p < 0.05). Notably, 97.8% (45/46) of the MDR-ACSSuT (resistance to Ampicillin, Chloramphenicol, Streptomycin, Sulfamethoxazole, and Tetracycline) isolates were ST34, among which 69.6% (32/46) of ST34 isolates were of human origin, while 30.4% (14/46) were derived from food (p < 0.05). Moreover, 88.48% (215/243) ST34 showed moderate to strong biofilm-forming ability compared with 10.9% (5/46) ST19 isolates (p < 0.01). This study revealed the emergence of high-level antibiotic resistance S. typhimurium ST34 with strong biofilm-forming ability, posing concerns for public health safety.

7.
Small ; 19(42): e2303095, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37340575

ABSTRACT

Effective training is crucial for patients who need rehabilitation for achieving optimal recovery and reducing complications. Herein, a wireless rehabilitation training monitoring band with a highly sensitive pressure sensor is proposed and designed. It utilizes polyaniline@waterborne polyurethane (PANI@WPU) as a piezoresistive composite material, which is prepared via the in situ grafting polymerization of PANI on the WPU surface. WPU is designed and synthesized with tunable glass transition temperatures ranging from -60 to 0 °C. Dipentaerythritol (Di-PE) and ureidopyrimidinone (UPy) groups are introduced, endowing the material with good tensile strength (14.2 MPa), toughness (62 MJ-1 m-3 ), and great elasticity (low permanent deformation: 2%). Di-PE and UPy enhance the mechanical properties of WPU by increasing the cross-linking density and crystallinity. Combining the toughness of WPU and the high-density microstructure derived by hot embossing technology, the pressure sensor exhibits high sensitivity (168.1 kPa-1 ), fast response time (32 ms), and excellent stability (10 000 cycles with 3.5% decay). In addition, the rehabilitation training monitoring band is equipped with a wireless Bluetooth module, which can be easily applied to monitor the rehabilitation training effect of patients using an applet. Therefore, this work has the potential to significantly broaden the application of WPU-based pressure sensors for rehabilitation monitoring.

8.
Microbiol Res ; 274: 127423, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37295142

ABSTRACT

Salmonella enterica serotype Typhimurium, an important foodborne pathogen with high adaptability to the host's internal and external survival environment, seriously threatens public health. Therefore, to understand the mechanism underlying the high adaptability, this study investigated the transcription factor BolA by constructing BolA deletion strain 269△BolA, complemented strain 269BolAR and overexpression strain 269BolA+ based on WT269. BolA significantly inhibited motility; at 6 h, the BolA overexpression strain (269BolA+) showed 91.2% and 90.7% lower motility than the wild type (WT269) and BolA deletion strain (269△BolA), respectively, by downregulating motility-related flagellar genes. BolA promoted biofilm formation; 269BolA+ showed 3.6-fold and 5.2-fold higher biofilm formation ability than WT269 and 269ΔBolA, respectively, by upregulation biofilm formation-related genes. BolA overexpression downregulated the outer membrane gene OmpF and upregulated OmpC, thereby regulating cell permeability, and reducing the antibacterial effect of vancomycin, which can destruct the outer membrane. BolA improved adaptability; 269△BolA showed higher susceptibility to eight antibiotics and 2.5- and 4-fold lower acid and oxidative stress tolerance, respectively, than WT269. In Caco-2 and HeLa cells, 269△BolA showed 2.8- and 3-fold lower cell adhesion ability, respectively, and 4- and 2-fold lower cell invasion ability, respectively, than WT269, through downregulation of the virulence genes. Thus, BolA expression promotes biofilm formation and balances the membrane permeability, thereby improving the resistance of the strains, and enhances its host cell invasion ability by upregulating bacterial virulence factors. Results of this study suggest that the BolA gene may serve as a potential target of therapeutic or preventative strategies to control Salmonella Typhimurium infections.


Subject(s)
Salmonella Infections , Salmonella typhimurium , Humans , Salmonella typhimurium/metabolism , Virulence/genetics , HeLa Cells , Caco-2 Cells , Serogroup , Anti-Bacterial Agents/pharmacology , Biofilms , Permeability , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial
9.
Bioact Mater ; 27: 58-71, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37035421

ABSTRACT

Melanoma is the most aggressive and malignant form of skin cancer. Current melanoma treatment methods generally suffer from frequent drug administration as well as difficulty in direct monitoring of drug release. Here, a self-monitoring microneedle (MN)-based drug delivery system, which integrates a dissolving MN patch with aggregation-induced emission (AIE)-active PATC microparticles, is designed to achieve light-controlled pulsatile chemo-photothermal synergistic therapy of melanoma. The PATC polymeric particles, termed D/I@PATC, encapsulate both of chemotherapeutic drug doxorubicin (DOX) and the photothermal agent indocyanine green (ICG). Upon light illumination, PATC gradually dissociates into smaller particles, causing the release of encapsulated DOX and subsequent fluorescence intensity change of PATC particles, thereby not only enabling direct observation of the drug release process under light stimuli, but also facilitating verification of drug release by fluorescence recovery after light trigger. Moreover, encapsulation of ICG in PATC particles displays significant improvement of its photothermal stability both in vitro and in vivo. In a tumor-bearing mouse, the application of one D/I@PATC MN patch combining with two cycles of light irradiation showed excellent controllable chemo-photothermal efficacy and exhibited ∼97% melanoma inhibition rate without inducing any evident systemic toxicity, suggesting a great potential for skin cancer treatment in clinics.

10.
Acta Pharmacol Sin ; 44(8): 1701-1711, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36932232

ABSTRACT

Eriocalyxin B (EB), 17-hydroxy-jolkinolide B (HJB), parthenolide (PN), xanthatin (XT) and andrographolide (AG) are terpenoid natural products with a variety of promising antitumor activities, which commonly bear electrophilic groups (α,ß-unsaturated carbonyl groups and/or epoxides) capable of covalently modifying protein cysteine residues. However, their direct targets and underlying molecular mechanisms are still largely unclear, which limits the development of these compounds. In this study, we integrated activity-based protein profiling (ABPP) and quantitative proteomics approach to systematically characterize the covalent targets of these natural products and their involved cellular pathways. We first demonstrated the anti-proliferation activities of these five compounds in triple-negative breast cancer cell MDA-MB-231. Tandem mass tag (TMT)-based quantitative proteomics showed all five compounds commonly affected the ubiquitin mediated proteolysis pathways. ABPP platform identified the preferentially modified targets of EB and PN, two natural products with high anti-proliferation activity. Biochemical experiments showed that PN inhibited the cell proliferation through targeting ubiquitin carboxyl-terminal hydrolase 10 (USP10). Together, this study uncovered the covalently modified targets of these natural products and potential molecular mechanisms of their antitumor activities.


Subject(s)
Biological Products , Biological Products/pharmacology , Biological Products/chemistry , Proteomics , Proteins/metabolism , Ubiquitins
11.
Microbiol Spectr ; 11(1): e0354222, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36651774

ABSTRACT

Salmonella Weltevreden is an emerging pathogen associated with human diarrhea, and knowledge of the genomics and epidemiology of this serovar is still limited. In this study, we performed whole-genome sequencing of 96 S. Weltevreden isolates recovered from diarrheal patients and 62 isolates from food animals in China between 2006 and 2017. Together, with an additional 199 genome sequences of S. Weltevreden published in NCBI, we performed an analysis on all 357 S. Weltevreden genome sequences. Our results demonstrated that the majority of S. Weltevreden from diarrheal patients from China (97.92%, 94/96) and the other regions in the world (94.97%, 189/199) identified in this study were sequence type (ST) 365. The remaining types were ST3771 (n = 3), ST22 (n = 1), ST155 (n = 1), and ST684 (n = 1). In addition, ST365 was also widely recovered from animals, food, and environmental samples in different regions of the world. Phylogenetic analysis and pulsed-field gel electrophoresis (PFGE) revealed that S. Weltevreden from diarrheal patients was closely related to those recovered from food and environmental specimens. We also showed that S. Weltevreden did not exhibit severe antimicrobial resistance profiles, suggesting administering antibiotics is still effective for controlling the agent. Interestingly, we found that S. Weltevreden strains carried a number of virulence factor genes, and a 100.03-kb IncFII(S) type plasmid was widely distributed in S. Weltevreden strains. Elimination of this plasmid decreased the bacterial capacity to infect both Caco-2 cells and C57BL/6 mice, suggesting the importance of this plasmid for bacterial virulence. Our results contribute to the understanding of the epidemiology and virulence of S. Weltevreden. IMPORTANCE Salmonella Weltevreden is a pathogen associated with human diarrheal diseases found across the globe. However, knowledge of the genomics and epidemiology of this pathogen is still limited. In this study, we found S. Weltevreden sequence type (ST) 365 is commonly recovered from diarrheal patients in China and many other regions of the world, and there is no major difference between the Chinese isolates and the global isolates at the phylogenetic level. We also demonstrated that ST365 was widely recovered from animal, food, and environmental samples collected in different, global regions. Importantly, we discovered an IncFII(S) type plasmid commonly carried by S. Weltevreden strains of human, animal, and food origins, and this plasmid is likely to contribute to the bacterial pathogenesis. These findings enhance our understanding of the emergence of S. Weltevreden involved in diarrheal outbreaks and the global spread of S. Weltevreden strains.


Subject(s)
Salmonella enterica , Animals , Mice , Humans , Serogroup , Phylogeny , Caco-2 Cells , Mice, Inbred C57BL , Salmonella , Diarrhea , Anti-Bacterial Agents/pharmacology , Genomics
12.
Acta Pharmacol Sin ; 43(12): 3112-3129, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36372853

ABSTRACT

Protein post-translational modifications (PTMs), which are usually enzymatically catalyzed, are major regulators of protein activity and involved in almost all celluar processes. Dysregulation of PTMs is associated with various types of diseases. Therefore, PTM regulatory enzymes represent as an attractive and important class of targets in drug research and development. Inhibitors against kinases, methyltransferases, deacetyltransferases, ubiquitin ligases have achieved remarkable success in clinical application. Mass spectrometry-based proteomics technologies serve as a powerful approach for system-wide characterization of PTMs, which facilitates the identification of drug targets, elucidation of the mechanisms of action of drugs, and discovery of biomakers in personalized therapy. In this review, we summarize recent advances of proteomics-based studies on PTM targeting drugs and discuss how proteomics strategies facilicate drug target identification, mechanism elucidation, and new therapy development in precision medicine.


Subject(s)
Protein Processing, Post-Translational , Proteomics , Mass Spectrometry , Proteins , Drug Discovery
13.
Drug Des Devel Ther ; 16: 3691-3709, 2022.
Article in English | MEDLINE | ID: mdl-36277600

ABSTRACT

Posaconazole is often used for the prophylaxis and treatment of invasive fungal infections (IFI). However, intra- and inter-individual differences and drug interactions affect the efficacy and safety of posaconazole. Precision dosing of posaconazole based on the population pharmacokinetic (PopPK) model may assist in making significant clinical decisions. This review aimed to comprehensively summarize the published PopPK models of posaconazole and analyze covariates that significantly influence posaconazole exposure. Articles published until May 2022 for PopPK analysis of posaconazole were searched in PubMed and EMBASE databases. Demographic characteristics, model characteristics, and results of PopPK analysis were extracted from the selected articles. In addition, the steady-state pharmacokinetic profiles of posaconazole were simulated at different covariate levels and dosing regimens. Out of the 13 studies included in our review, nine studies included adults, three included children, and one included both adults and children. All oral administration models were one-compartment models, and all intravenous administration models were two-compartment models. Body weight, proton pump inhibitors, and incidence of diarrhea were found to be important covariates. Clinically, the potential impact of factors such as patient physiopathologic characteristics and comorbid medications on posaconazole pharmacokinetics should be considered. Dose adjustment in combination with TDM or replacement with a tablet or intravenous formulation with higher exposure may be an effective way to ensure drug efficacy as well as to reduce fungal resistance. Meanwhile, published models require further external evaluation to examine extrapolation.


Subject(s)
Antifungal Agents , Proton Pump Inhibitors , Adult , Child , Humans , Antifungal Agents/adverse effects , Triazoles , Tablets
14.
Pharmaceutics ; 14(10)2022 Sep 20.
Article in English | MEDLINE | ID: mdl-36297422

ABSTRACT

Omeprazole is commonly prescribed to obese patients and patients after laparoscopic sleeve gastrectomy (LSG). The pharmacokinetics of oral omeprazole after LSG are still unknown. Therefore, the aim of this study was to investigate the pharmacokinetics of oral omeprazole in obese patients before and after LSG. A total of 331 blood samples were collected from 62 obese patients preoperatively (visit 1) followed by 41 patients 7 days post-LSG (visit 2) and 20 patients 1 month post-LSG (visit 3). Population pharmacokinetic analysis was performed using NONMEM to characterize the effect of LSG on omeprazole absorption and disposition. A one-compartment model with 12 transit absorption compartments and linear elimination successfully described the data. Compared with pre-surgery, the oral omeprazole time to maximum plasma concentration (Tmax) was reduced and maximum plasma concentration (Cmax) was higher, but the apparent clearance (CL/F) and area under the plasma concentration-time curve (AUC) were unchanged 7 days and 1 month after surgery. In addition, the CYP2C19 genotype and liver function exhibited a significant influence on omeprazole CL/F. LSG increased the rate of omeprazole absorption but did not affect omeprazole exposure. A dose of 20 mg omeprazole once daily may be adequate for relieving gastrointestinal tract discomfort at short-term follow-up post-LSG.

15.
Expert Rev Clin Pharmacol ; 15(4): 461-471, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35522794

ABSTRACT

BACKGROUND: Obesity is related to many pathophysiological changes that may result in altered drug disposition. Omeprazole is the most common option utilized for acid-related disorders ; however, the pharmacokinetic (PK) and dosing recommendations for the obese patient population are lacking. METHODS: Data from 40 healthy subjects with normal weights and data from 61 obese subjects were included. The subjects all received a single dose of 20 mg of omeprazole. Nonlinear mixed effects modeling were performed to characterize the effect of obesity on omeprazole PK. RESULTS: A one-compartment model with twelve transit absorption compartments and linear elimination described the data best. A lower clearance was observed in the obese patient population than in the normal-weight subjects. Moreover, the CYP2C19 genotype was identified as a significant covariate for clearance. CONCLUSION: Given the potential adverse events related to high exposure to proton pump inhibitors over time, obese patients may require a lower dose of omeprazole for long-term treatment. Further studies in obese individuals into other drugs metabolized by CYP2C19 are warranted, especially those with a narrow therapeutic window. CLINICAL TRIAL REGISTRATION: www.chictr.org.cn identifier is ChiCTR2100046578; www.chinadrugtrials.org.cn identifier is CTR20190175.


Subject(s)
Omeprazole , Proton Pump Inhibitors , Adult , Cytochrome P-450 CYP2C19/genetics , Genotype , Humans , Obesity/drug therapy , Omeprazole/adverse effects , Proton Pump Inhibitors/adverse effects
16.
Front Microbiol ; 13: 876500, 2022.
Article in English | MEDLINE | ID: mdl-35369456

ABSTRACT

Salmonella Typhimurium is an important food-borne pathogen. In this paper, multicellular behavior and associated characteristics of S. Typhimurium isolated from human and animal source food were studied. All the S. Typhimurium strains exhibiting multicellular behavior (100%) belonged to the ST34 type. In addition, most of the ST34-type multicellular behavior S. Typhimurium strains had a human origin (69.11%) and 98% of the ST34-type multicellular behavior strains exhibited strong biofilm formation capacity, which was much higher than that of non-multicellular behavior strains (7%, P < 0.01). Antibiotic resistance in ST34-type multicellular behavior strains was significantly higher than in strains with non-multicellular behavior for most conventional drugs (P < 0.05); notably, Polymyxin B (8%) and Imipenem (1%) resistances were also observed in the ST34-type strains. Furthermore, all the ST34-type multicellular behavior strains (100%) exhibited Multiple Drug Resistance (resistance to ≥3antibiotics), which was much higher than that of the non-multicellular behavior strains (P < 0.05). Consistent with the drug-resistant phenotype, the carrying rates of most drug-resistant genes in ST34-type multicellular behavior strains were higher than that those in non-multicellular behavior strains (P < 0.05). Therefore, this study revealed the emergence of a prevalent ST34-type multicellular behavior S. Typhimurium strains with increased biofilm formation ability and drug resistance rate, which poses a threat to public health safety, and highlights the need for comprehensive monitoring of the strains.

17.
Gigascience ; 112022 04 06.
Article in English | MEDLINE | ID: mdl-35383847

ABSTRACT

BACKGROUND: The dazzling phenotypic characteristics of male Indian peafowl (Pavo cristatus) are attractive both to the female of the species and to humans. However, little is known about the evolution of the phenotype and phylogeny of these birds at the whole-genome level. So far, there are no reports regarding the genetic mechanism of the formation of leucism plumage in this variant of Indian peafowl. RESULTS: A draft genome of Indian peafowl was assembled, with a genome size of 1.05 Gb (the sequencing depth is 362×), and contig and scaffold N50 were up to 6.2 and 11.4 Mb, respectively. Compared with other birds, Indian peafowl showed changes in terms of metabolism, immunity, and skeletal and feather development, which provided a novel insight into the phenotypic evolution of peafowl, such as the large body size and feather morphologies. Moreover, we determined that the phylogeny of Indian peafowl was more closely linked to turkey than chicken. Specifically, we first identified that PMEL was a potential causal gene leading to the formation of the leucism plumage variant in Indian peafowl. CONCLUSIONS: This study provides an Indian peafowl genome of high quality, as well as a novel understanding of phenotypic evolution and phylogeny of Indian peafowl. These results provide a valuable reference for the study of avian genome evolution. Furthermore, the discovery of the genetic mechanism for the development of leucism plumage is both a breakthrough in the exploration of peafowl plumage and also offers clues and directions for further investigations of the avian plumage coloration and artificial breeding in peafowl.


Subject(s)
Feathers , Genomics , Animals , Female , Genome Size , Genomics/methods , Male , Phylogeny , Quail
18.
Small ; 18(11): e2107374, 2022 03.
Article in English | MEDLINE | ID: mdl-35129310

ABSTRACT

Specific recognition and strong affinities of bacteria receptors with the host cell glycoconjugates pave the way to control the bacteria aggregation and kill bacteria. Herein, using aggregation-induced emission (AIE) molecules decorated upper critical solution temperature (UCST) polyvalent scaffold (PATC-GlcN), an approach toward visualizing bacteria aggregation and controlling bacteria-polyvalent scaffolds affinities under temperature stimulus is described. Polyvalent scaffolds with diblocks, one UCST block PATC of polyacrylamides showing a sharp UCST transition and typical AIE behavior, the second bacteria recognition block GlcN of hydrophilic glucosamine modified polyacrylamide, are prepared through a reversible addition and fragmentation chain transfer polymerization. Aggregated chain conformation of polyvalent scaffolds at temperature below UCST induces the aggregation of E. coli ATCC8739, because of the high density of glucosamine moieties, whereas beyond UCST, the hydrophilic state of the scaffolds dissociates the bacteria aggregation. The sweet-talking of bacteria toward the polyvalent scaffolds can be visualized by the fluorescent imaging technique, simultaneously. Due to the specific recognition of polyvalent scaffolds with bacteria, the photothermal agent IR780 loaded PATC-GlcN shows the targeted killing ability toward E. coli ATCC8739 in vitro and in vivo under NIR radiation.


Subject(s)
Escherichia coli , Polymers , Polymerization , Temperature
19.
ACS Appl Mater Interfaces ; 13(49): 58566-58575, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34852196

ABSTRACT

Perovskite oxides have emerged as promising candidates for the oxygen evolution reaction (OER) electrocatalyst due to their flexible lattice structure, tunable electronic structure, superior stability, and cost-effectiveness. Recent research studies have mostly focused on the traditional methods to tune the OER performance, such as cation/anion doping, A-/B-site ordering, epitaxial strain, oxygen vacancy, and so forth, leading to reasonable yet still limited activity enhancement. Here, we report a novel strategy for promoting the OER activity for perovskite LaNiO3 by crystal phase engineering, which is realized by breaking long-range chemical bonding through amorphization. We provide the first and direct evidence that perovskite oxides with an amorphous structure can induce the self-adaptive process, which helps enhance the OER performance. This is evidenced by the fact that an amorphous LaNiO3 film on glassy carbon shows a 9-fold increase in the current density compared to that of an epitaxial LaNiO3 single crystalline film. The obtained current density of 1038 µΑ cm-2 (@ 1.6 vs RHE) is the largest value among the literature reported values. Our work thus offers a new protocol to boost the OER performance for perovskite oxides for future clean energy applications.

20.
Opt Express ; 29(24): 39173, 2021 Nov 22.
Article in English | MEDLINE | ID: mdl-34809286

ABSTRACT

This erratum corrects a typographical error in Fig. 2 of our published paper [Opt. Express29, 27554 (2021)10.1364/OE.434751].

SELECTION OF CITATIONS
SEARCH DETAIL
...