Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Fish Shellfish Immunol ; 149: 109600, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38701991

ABSTRACT

Excess utilization of plant protein sources in animal feed has been found to adversely affect the antioxidant properties and immunity of animals. While the role of gut microbes in plant protein-induced inflammation has been identified in various models, the specific mechanisms regulating gut microbes in crustaceans remain unclear. Accordingly, this study was designed to investigate the effects of replacing fishmeal with soybean meal (SM) on the hepatopancreas antioxidant and immune capacities, and gut microbial functions of crayfish, as well as the potential microbial regulatory mechanisms. 750 crayfish (4.00 g) were randomly divided into five groups: SS0, SS25, SS50, SS75, and SS100, and fed diets with different levels of soybean meal substituted for fishmeal for six weeks. High SM supplementation proved detrimental to maintaining hepatopancreas health, as indicated by an increase in hemolymph MDA content, GPT, and GOT activities, the observed rupture of hepatopancreas cell basement membranes, along with the decreased number of hepatopancreatic F cells. Moreover, crayfish subjected to high SM diets experienced obvious inflammation in hepatopancreas, together with up-regulated mRNA expression levels of nfkb, alf, and tlr (p<0.05), whereas the lzm mRNA expression level exhibited the highest value in the SS25 group. Furthermore, hepatopancreas antioxidant properties highly attenuated by the level of dietary SM substitution levels, as evidenced by the observed increase in MDA content (p<0.05), decrease in GSH content (p<0.05), and inhabitation of SOD, CAT, GPx, and GST activities (p<0.05), along with down-regulated hepatopancreas cat, gpx, gst, and mmnsod mRNA expression levels via inhibiting nrf2/keap1 pathway. Functional genes contributing to metabolism identified that high SM diets feeding significantly activated lipopolysaccharide biosynthesis, revealing gut dysfunction acted as the cause of inflammation. The global microbial co-occurrence network further indicated that the microbes contributing more to serum indicators and immunity were in module eigengene 17 (ME17). A structural equation model revealed that the genes related to alf directly drove the serum enzyme activities through microbes in ME17, with OTU399 and OTU533 identified as major biomarkers and classified into Proteobacteria that secrete endotoxins. To conclude, SM could replace 25 % of fishmeal in crayfish diets without negatively affecting immunity, and antioxidant capacity. Excessive SM levels contributed to gut dysfunction and weakened the innate immune system of crayfish.


Subject(s)
Animal Feed , Antioxidants , Astacoidea , Diet , Gastrointestinal Microbiome , Glycine max , Hepatopancreas , Animals , Astacoidea/immunology , Astacoidea/genetics , Animal Feed/analysis , Glycine max/chemistry , Antioxidants/metabolism , Diet/veterinary , Gastrointestinal Microbiome/drug effects , Hepatopancreas/immunology , Hepatopancreas/metabolism , Immunity, Innate/drug effects , Random Allocation , Intestines/immunology , Intestines/drug effects , Dietary Supplements/analysis
2.
Opt Express ; 31(14): 22569-22579, 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37475364

ABSTRACT

The self-accelerating beams such as the Airy beam show great potentials in many applications including optical manipulation, imaging and communication. However, their superior features during linear propagation could be easily corrupted by optical nonlinearity or spatial incoherence individually. Here we investigate how the interaction of spatial incoherence and nonlinear propagation affect the beam quality of Airy beam, and find that the two destroying factors can in fact balance each other. Our results show that the influence of coherence and nonlinearity on the propagation of partially incoherent Airy beams (PIABs) can be formulated as two exponential functions that have factors of opposite signs. With appropriate spatial coherence length, the PIABs not only resist the corruption of beam profile caused by self-focusing nonlinearity, but also exhibits less anomalous diffraction caused by the self-defocusing nonlinearity. Our work provides deep insight into how to maintain the beam quality of self-accelerating Airy beams by exploiting the interaction between partially incoherence and optical nonlinearity. Our results may bring about new possibilities for optimizing partially incoherent structured field and developing related applications such as optical communication, incoherent imaging and optical manipulations.

3.
Fish Shellfish Immunol ; 125: 190-199, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35569777

ABSTRACT

In aquatic animals, hydrogen peroxide (H2O2), which is a source of oxidative stress, can cause physiological dysfunction, inflammation, and death. Sanguinarine (SAN) is a plant extract known to improve antioxidant and immune capacity. However, the roles of SAN in H2O2-induced liver tissue toxicity is unclear. The effects on hepatic oxidative damage, inflammatory response, and apoptosis were investigated by feeding rice field eel with 0, 375, and 750 µg/kg of SAN for eight weeks and then intraperitoneally injected with H2O2. The results showed that after 24 h of H2O2 injection, the activities of ALT and AST in serum were significantly increased, oxidative damage and inflammatory response occurred in the liver, and apoptosis was induced, which indicated that H2O2 induced liver damage in rice field eel. However, dietary supplemented with 375 or 750 µg/kg SAN significantly decreased the activities of ALT and AST in serum, and significantly increased the antioxidant function (decreased ROS, MDA, and antioxidant enzymes levels, downregulated antioxidant-related gene expression, and inhibited the transcription level of nrf2). The addition of SAN at 375 or 750 µg/kg ameliorated H2O2-induced inflammatory response of liver (upregulated tgf-ß1 mRNA expression, downregulated il-1ß, il-6, il-8, and il-12ß mRNA expression, and inhibited the transcription levels of tlr-3 tlr-7, and nf-κb). In addition, dietary supplemented with 375 or 750 µg/kg SAN alleviated the apoptosis of liver induced by H2O2 (downregulated bax mRNA expression, upregulated caspase3 mRNA expression, and reduced the number of apoptotic cells by TUNEL staining). Overall, these results suggested that SAN could alleviate the liver injury in rice field eel induced by H2O2, mainly by improving antioxidant capacity, alleviating inflammatory response and inhibiting apoptosis, and the effect of 750 µg/kg SAN addition is better than 375 µg/kg.


Subject(s)
Hydrogen Peroxide , Smegmamorpha , Animals , Antioxidants/metabolism , Apoptosis , Benzophenanthridines , Hydrogen Peroxide/metabolism , Inflammation/chemically induced , Inflammation/veterinary , Isoquinolines , Liver/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Oxidative Stress , RNA, Messenger/metabolism , Smegmamorpha/genetics
4.
ACS Appl Mater Interfaces ; 14(7): 9824-9832, 2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35143168

ABSTRACT

As a promising thermoelectric and semiconducting material, the stability of two-dimensional tin selenide (SnSe) under harsh environments is significant for its practical applications. Here, focusing on the key procedures in the device fabrication process, we report the anisotropic structural and electrical stabilities of SnSe under an alkaline environment and mechanical strain. Due to the anisotropic mechanical properties, the SnSe flakes can naturally form long-straight {011} edge planes during the mechanical exfoliation process. Such a cleavage tendency provides an effective crystal orientation identification method to uncover the orientation-dependent properties. We find that the single-crystalline SnSe flakes experience an anisotropic degradation process with the preferable {011} dissolution planes in the alkaline environment and can be gradually transformed to be polycrystalline consisting of SnSe2, Sn, and Se nanocrystals. SnSe flakes present an anisotropic electromechanical response with a gauge factor value that reaches ∼-460 under the uniaxial strain along the ⟨011⟩ directions. Our revealed structural and electrical stability of SnSe under harsh environments can provide guidance for the device design, fabrication, and performance evaluation.

5.
Nanoscale ; 13(28): 12370-12378, 2021 Jul 28.
Article in English | MEDLINE | ID: mdl-34254619

ABSTRACT

Although vanadium (V)-based sulfides have been investigated as cathodes for aqueous zinc-ion batteries (ZIBs), the performance improvement and the intrinsic zinc-ion (Zn2+) storage mechanism revelation is still challenging. Here, VS4@rGO composite with optimized morphology is designed and exhibits ultrahigh specific capacity (450 mA h g-1 at 0.5 A g-1) and high-rate capability (313.8 mA h g-1 at 10 A g-1) when applied as cathode material for aqueous ZIBs. Furthermore, the VS4@rGO cathode presents long-life cycling stability with capacity retention of ∼82% after 3500 cycles at 10 A g-1. The structural evolution, redox, and degradation mechanisms of VS4 during (dis)charge processes are further probed by in situ XRD/Raman techniques and TEM analysis. Our results indicate that the main energy storage mechanism is derived from the intercalation/deintercalation reactions in the open channels of VS4. Notably, an irreversible phase transition of VS4 into Zn3(OH)2V2O7·2H2O (ZVO) during the charging process and the further transition from ZVO to ZnV3O8 during long-term cycles are also observed, which might be the main reason leading to the capacity degradation of VS4@rGO. Our study further improves the electrochemical performance of VS4 in aqueous ZIBs through morphology design and provides new insights into the energy storage and performance degradation mechanisms of Zn2+ storage in VS4, and thus may endow the large-scale application of V-based sulfides for energy storage systems.

6.
Nat Commun ; 12(1): 739, 2021 02 02.
Article in English | MEDLINE | ID: mdl-33531497

ABSTRACT

The proteasome activator PA28αß affects MHC class I antigen presentation by associating with immunoproteasome core particles (iCPs). However, due to the lack of a mammalian PA28αß-iCP structure, how PA28αß regulates proteasome remains elusive. Here we present the complete architectures of the mammalian PA28αß-iCP immunoproteasome and free iCP at near atomic-resolution by cryo-EM, and determine the spatial arrangement between PA28αß and iCP through XL-MS. Our structures reveal a slight leaning of PA28αß towards the α3-α4 side of iCP, disturbing the allosteric network of the gatekeeper α2/3/4 subunits, resulting in a partial open iCP gate. We find that the binding and activation mechanism of iCP by PA28αß is distinct from those of constitutive CP by the homoheptameric TbPA26 or PfPA28. Our study sheds lights on the mechanism of enzymatic activity stimulation of immunoproteasome and suggests that PA28αß-iCP has experienced profound remodeling during evolution to achieve its current level of function in immune response.


Subject(s)
Cryoelectron Microscopy/methods , Proteasome Endopeptidase Complex/immunology , Proteasome Endopeptidase Complex/ultrastructure , Antigen Presentation/immunology , Histocompatibility Antigens Class I/immunology , Humans , Proteasome Endopeptidase Complex/metabolism
7.
Sci Adv ; 7(1)2021 01.
Article in English | MEDLINE | ID: mdl-33277323

ABSTRACT

The recent outbreaks of SARS-CoV-2 pose a global health emergency. The SARS-CoV-2 trimeric spike (S) glycoprotein interacts with the human ACE2 receptor to mediate viral entry into host cells. We report the cryo-EM structures of a tightly closed SARS-CoV-2 S trimer with packed fusion peptide and an ACE2-bound S trimer at 2.7- and 3.8-Å resolution, respectively. Accompanying ACE2 binding to the up receptor-binding domain (RBD), the associated ACE2-RBD exhibits continuous swing motions. Notably, the SARS-CoV-2 S trimer appears much more sensitive to the ACE2 receptor than the SARS-CoV S trimer regarding receptor-triggered transformation from the closed prefusion state to the fusion-prone open state, potentially contributing to the superior infectivity of SARS-CoV-2. We defined the RBD T470-T478 loop and Y505 as viral determinants for specific recognition of SARS-CoV-2 RBD by ACE2. Our findings depict the mechanism of ACE2-induced S trimer conformational transitions from the ground prefusion state toward the postfusion state, facilitating development of anti-SARS-CoV-2 vaccines and therapeutics.


Subject(s)
Angiotensin-Converting Enzyme 2/chemistry , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Animals , Cryoelectron Microscopy , Enzyme-Linked Immunosorbent Assay , Humans , Image Processing, Computer-Assisted , Ligands , Mice , Mice, Inbred BALB C , Mutation , Peptides/chemistry , Polysaccharides , Principal Component Analysis , Protein Binding , Protein Domains
8.
Mitochondrial DNA B Resour ; 5(1): 646-647, 2020 Jan 16.
Article in English | MEDLINE | ID: mdl-33366685

ABSTRACT

We reported the complete mitochondrial genome yielded by next-generation sequencing of Brochis multiradiatus in this study. The total length of the mitochondrial genome is 16,916 bp, with the base composition of 32.49% A, 25.47% T, 27.12% C, and 14.91% G. It contains 2 ribosomal RNA genes, 13 protein-coding genes, 22 transfer RNA genes, and a major non-coding control region (D-loop region). The arrangement of these genes is the same as that found in the Corydoras. The complete mitochondrial genomes of B. multiradiatus and other 12 species from Siluriformes were used for phylogenetic analysis using neighbor-joining method. The topology demonstrated that all species belong to four genera and are divided into two groups (Siluridae and Callichthyidae), the B. multiradiatus was clustered with genus Corydoras. Brochis multiradiatus' molecular classification is consistent with the external morphological feature results, so the information of the mitogenome could be used for future identification of Brochis.

9.
Fish Shellfish Immunol ; 99: 154-166, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32045638

ABSTRACT

We evaluated the effects of hesperidin on the nonspecific immunity, antioxidant capacity and growth performance of red swamp crayfish (Procambarus clarkii). A total of 900 healthy crayfish were randomly divided into six groups: the control group (fed the basal diet) and the HES25, HES50, HES75, HES100 and HES150 groups, which were fed the basal diet supplemented with 25, 50, 75, 100 and 150 mg kg-1 hesperidin, respectively. The feeding experiment lasted 8 weeks. The results indicated that compared with the control group, the crayfish groups supplemented with 50-150 mg kg-1 hesperidin had a decreased feed conversion ratio (FCR) and increased final body weight (FBW), specific growth rate (SGR) and weight gain (WG) (P < 0.05). The protein carbonyl content (PCC), reactive oxygen species (ROS) level and malondialdehyde (MDA) level in the hepatopancreas and hemocytes were significantly lower, while the total antioxidant capacity (T-AOC), glutathione peroxidase (GPx) activity, and superoxide dismutase (SOD) activity were significantly higher in the crayfish groups supplemented with 50-150 mg kg-1 hesperidin than in the control group. Supplementation with 50-150 mg kg-1 hesperidin significantly increased the activities of acid phosphatase (ACP), alkaline phosphatase (AKP), lysozyme (LZM), and phenoloxidase (PO) compared with the control group (P < 0.05); upregulated the mRNA expression of cyclophilin A (CypA), extracellular copper-zinc superoxide dismutase (ecCuZnSOD), GPxs, crustin, astacidin, Toll3 and heat shock protein 70 (HSP70) (P < 0.05); and decreased crayfish mortality following white spot syndrome virus (WSSV) infection. These findings indicate that dietary hesperidin supplementation at an optimum dose of 50-150 mg kg-1 may effectively improve nonspecific immunity, antioxidant capacity and growth performance in crayfish.


Subject(s)
Astacoidea/growth & development , Astacoidea/immunology , DNA Virus Infections/veterinary , Dietary Supplements , Disease Resistance , Hesperidin/immunology , Animal Feed , Animals , Antioxidants/metabolism , DNA Virus Infections/immunology , Hemocytes/immunology , Hepatopancreas/immunology , Hesperidin/administration & dosage , Immunity, Innate , White spot syndrome virus 1
10.
Sci Rep ; 9(1): 19708, 2019 12 23.
Article in English | MEDLINE | ID: mdl-31873163

ABSTRACT

Straw is one of the most abundant stock of renewable biomass from crop production. However, its utilization efficiency is still very low. Although co-cultivation of fungi increases the degrading rate, the co-cultivation condition needs to be optimized. To optimize the co-culture condition of Phanerochaete chrysosporium and Trichoderma viride degrading rice straw, we first tested the antagonistic characteristic between the fungi. The results showed that the best co-culture pattern was to first inoculate P. chrysosporium and culture for 4 days, then inoculate T. viride, and co-culture the two fungi for 4 days. The optimum fermentation condition was 14% (w/v) of inoculum concentration, the equivalent inoculation of the fungi, culture temperature at 30 °C, and 1:1.4 for solid-liquid ratio. Under the optimum condition, the degradation ratios of lignin and cellulose were 26.38% and 33.29%, respectively; the soluble carbon content in the culture product was 23.07% (w/v). The results would provide important reference information for the efficient utilization of rice straw to produce more accessible energy resources, such as ethanol and glucose.


Subject(s)
Oryza/chemistry , Phanerochaete/metabolism , Trichoderma/metabolism , Coculture Techniques , Fermentation , Temperature , Trichoderma/growth & development
11.
Nanoscale ; 11(28): 13343-13353, 2019 Jul 28.
Article in English | MEDLINE | ID: mdl-31271407

ABSTRACT

Revealing the electrochemical property-structure relationship and observing the dynamic structural evolution of electrode materials are critically important for battery performance improvement and the corresponding mechanistic understanding. Here, highly crystalline VS2 nanosheets/carbon nanotubes (CNTs) with a core/branch structure were synthesized, exhibiting reversible discharge capacity of ∼850 mA h g-1 at 200 mA g-1, high coulombic efficiency of ∼98%, good cycling stability and superior rate capability. The relationship between the electrochemical properties and the corresponding dynamic microstructural evolution was further revealed with the in situ electron microscopy technique. Our results showed that the intercalation process with the formation of amorphous LixVS2 and the subsequent conversion reactions with the formation of crystalline Li2S and V nanocrystals occurred during the discharging process. Crystalline Li2S was oxidized in the charging process. The core/branched structure ensured a large exposed surface area of the VS2 nanosheets and provided extra space to accommodate the volume expansion. Meanwhile, the CNTs surrounded by VS2 nanosheets not only provided a continuous and fast conducting pathway for carriers throughout the electrodes, but also enhanced the mechanical stability of the electrode material. These factors finally contributed to the superior electrochemical performance of the core/branch-structured VS2/CNTs electrode.

12.
BMC Ophthalmol ; 19(1): 88, 2019 Apr 08.
Article in English | MEDLINE | ID: mdl-30961593

ABSTRACT

BACKGROUND: Small incision lenticule extraction (SMILE) and femtosecond laser-assisted in situ keratomileusis (FS-LASIK) are frequently used to treat myopia. However, little is known about the impact on recovery of these approaches in the very early postsurgical phase (within 24 h). METHODS: To compare the efficacy of these two procedures for the treatment of myopia in the early phase after surgery, differences in visual acuity, OSI (objective scattering index), cutoff for modulation transfer function (MTF), and SR (Strehl ratio) between SMILE and FS-LASIK were evaluated at 0, 2, 4 and 24 h postoperatively using two-way analysis of variance (ANOVA). RESULTS: No significant differences between SMILE and FS-LASIK in the MTF cutoff and SR were found (p > 0.05). However, at 2 h and 4 h after surgery, OSI values in the SMILE group were significantly higher than those in the FS-LASIK group, and visual acuity scores in the SMILE group were significantly poorer than those in the FS-LASIK group (p < 0.05). Regarding subjective symptoms, the number of patients complaining of eye dryness, blurred vision, foreign body sensation and eye soreness in the SMILE group were lower than the number in the FS-LASIK group. CONCLUSIONS: In conclusion, visual and optical quality outcomes of FS-LASIK for myopia were better than those of SMILE in the very early phase after surgery, a difference that is attributable to the formation of interface haze. TRIAL REGISTRATION: ChiCTR1900021451 .


Subject(s)
Corneal Stroma/surgery , Keratomileusis, Laser In Situ/methods , Lasers, Excimer/therapeutic use , Myopia/surgery , Refraction, Ocular/physiology , Visual Acuity , Adolescent , Adult , Female , Follow-Up Studies , Humans , Male , Myopia/physiopathology , Postoperative Period , Prospective Studies , Time Factors , Treatment Outcome , Young Adult
13.
Int J Ophthalmol ; 11(11): 1746-1754, 2018.
Article in English | MEDLINE | ID: mdl-30450303

ABSTRACT

AIM: To explore the more suitable concentration of glutamate or N-methyl-D-aspartic acid (NMDA) for intravitreal injection to establish a rat model of retinal neurodegeneration. METHODS: We injected different doses of glutamate (20 or 50 nmol) or NMDA (40 nmol) into the vitreous chambers of rats, then measured the concentration of glutamate and retinal thickness, quantified apoptotic cells and determined the degree of tau hyperphosphorylation at different time points. T-test was used for comparison of two groups. One-way ANOVA and Turkey's multiple comparisons test were used for comparisons of different groups, and P values below 0.05 were considered statistically significant. RESULTS: The glutamate level in the rats treated with 50 nmol of glutamate was twice that of the control group and persisted two weeks. Seven days after intravitreal injection of 50 nmol of glutamate, three parameters [inner retinal thickness (IRT), retinal thickness (RT) and ganglion cell layer (GCL) cell number] were reduced significantly. Furthermore, numerous TUNEL-positive cells were observed in the GCL one day after intravitreal injection of 50 nmol of glutamate, the expression of the apoptosis-related factor cleaved casepase-3 was markedly increased compared with the expression levels in the other treatment groups, and the expression levels of tau s396 and tau s404 were significantly increased compared with those in the control group. CONCLUSION: This study demonstrates that the intravitreal injection of 50 nmol of glutamate can establish the more effective retinal neurodegeneration animal model relative to other treatment groups.

14.
J Ophthalmol ; 2018: 6952710, 2018.
Article in English | MEDLINE | ID: mdl-30147948

ABSTRACT

PURPOSE: To estimate the treatment effectiveness of femtosecond-assisted laser in situ keratomileusis (FS-LASIK) and Toric implantable collamer lens (Toric ICL) for moderate and high astigmatism via vector analysis. MATERIALS AND METHODS: The study involved 44 eyes from 44 patients who had a preoperative refractive cylinder ≥1.0 diopters (D) and underwent bilateral FS-LASIK or Toric ICL surgery. The examinations included corrected distance visual acuity measurement and subjective refraction before and 3 months after surgery. The astigmatic changes were estimated using vector analysis. RESULTS: No statistically significant differences were found in cylindrical refraction and percentage of spherical equivalent within 0 D, ±0.50 D, ±1.00 D, and ±1.50 D between the FS-LASIK and Toric ICL groups at 3 months after surgery. The parameters of the vector analysis included intended refractive correction, surgically induced refractive correction, error vector, correction ratio, error ratio, error of magnitude, and error of angle, with no significant differences between the groups. However, error ratio the of the off-axis correction in the FS-LASIK and Toric ICL groups was 4.11 ± 3.02 and 8.11 ± 3.82, respectively, and the difference was significant (t = -2.46, p=0.02). CONCLUSION: Both FS-LASIK and Toric ICL were effective for correcting moderate and high astigmatism, although Toric ICL might produce a larger error of angle than FS-LASIK when an off-axis correction occurs.

15.
J Ophthalmol ; 2018: 6040873, 2018.
Article in English | MEDLINE | ID: mdl-30050690

ABSTRACT

PURPOSE: To evaluate the effect of corneal cap thickness on visual acuity and corneal biomechanics in small incision lenticule extraction (SMILE) for the treatment of myopia. METHODS: Forty eyes of 20 patients undergoing SMILE for the treatment of myopia were enrolled in this prospective controlled study. The patients with 510 µm-560 µm central corneal thickness (CCT) and a refractive spherical equivalent of -3.00 D to -8.00 D were included. It was designed randomly to undergo SMILE with a 110 µm cap thickness in one eye and 150 µm cap thickness in the other. Ophthalmic examinations included best-corrected and uncorrected visual acuity (UCVA); refractive status, contrast sensitivity, and objective visual quality were evaluated at 2 h, 4 h, and 24 h postoperatively; while at 3 months after the procedure, corrected intraocular pressure (IOP), higher order aberrations (HOAs), and morphologic modifications of corneal architecture of both eyes were assessed. RESULTS: Compared with the 150 µm group, the incidence of OBL was significantly higher in the 110 µm cap thickness group (P=0.004), and UCVA, Strehl ratio (SR), objective scatter index (OSI), modulation transfer function (MTF) cutoff frequency, and photopic and scotopic contrast sensitivity at medium spatial frequency were all significantly better in 110 µm group at 2 h and 24 h postoperatively (P < 0.05). Corneal spherical aberration and corrected IOP by Corvis ST were significantly higher in the 110 µm group at 3 months postoperatively (P < 0.05). No statistically significant differences were found in manifest refraction, UCVA, SR, OSI, MTF cutoff, and mesopic and photopic contrast sensitivity at low frequency, photopic contrast sensitivity at high frequency, endothelial density, corneal coma, and total HOAs at 3 months after the procedure. No visual decline was found in the patients in this study. CONCLUSIONS: Both 110 µm and 150 µm cap thickness in SMILE were safe and effective for treatment of myopia. A 110 µm cap thickness demonstrated better visual outcomes during early and late postoperative periods with higher corneal spherical aberration and corrected IOP at 3 months postoperatively. This trial is registered with ChiCTR-IOR-17013369.

16.
Medicine (Baltimore) ; 96(30): e7409, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28746183

ABSTRACT

To evaluate the refractive outcomes of balanced salt solution infiltration during small-incision lenticule extraction (SMILE).This randomized prospective study enrolled 52 patients (104 eyes) with myopic astigmatism. Patients underwent SMILE to correct the myopic astigmatism in Daping Hospital of the Third Military Medical University between January and July 2013. One eye of each patient received traditional SMILE (control group) and the other received a modified SMILE procedure (liquid infiltration group). The corrected distance visual acuity (CDVA), postoperative uncorrected distance visual acuity (UDVA), refraction, wavefront aberration, intraocular pressure (IOP), modulation transfer function (MTF) cut-off frequency, and objective scattering index (OSI) were evaluated.UDVA in the liquid infiltration group was significantly higher than that in the control group at 1 day postoperatively, but not at 1 month after surgery. Moreover, OSI and MTF cut-off frequency in the liquid infiltration group were higher than those in the control group at early follow-up. However, no significant intergroup difference was observed in the OSI and MTF cut-off frequency at 3 months after surgery. In addition, the predictability was better in the liquid infiltration group than in the control group. The changes of horizontal coma in the liquid infiltration group were lesser than those in the control group. However, no intergroup difference was observed in the reduction of IOP at 1 month after surgery.The modified SMILE procedure results in better visual outcomes than did the traditional SMILE procedure when used for treating myopic astigmatism.


Subject(s)
Astigmatism/surgery , Corneal Surgery, Laser/methods , Myopia/surgery , Adolescent , Adult , Astigmatism/complications , Astigmatism/drug therapy , Astigmatism/physiopathology , Corneal Surgery, Laser/adverse effects , Female , Follow-Up Studies , Humans , Intraocular Pressure , Male , Myopia/complications , Myopia/drug therapy , Myopia/physiopathology , Refraction, Ocular , Sodium Chloride , Treatment Outcome , Visual Acuity , Young Adult
17.
Fish Shellfish Immunol ; 40(2): 603-8, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25149589

ABSTRACT

Trypsin-like serine protease (TLS) is ubiquitous in animals and plays a number of diverse roles, including dietary protein digestion, hemolymph coagulation, antimicrobial activity and immune responses, among others. This study reports the isolation of a 1048 bp full-length cDNA sequence of TLS from triangle-shell pearl mussel (Hyriopsis cumingii), including a 12 bp 5' UTR (untranslated region), a 172 bp 3' UTR, and an open reading frame (ORF) of 864 bp by rapid amplification of cDNA ends (RACE). Bioinformatic analysis shows that the gene belongs to the trypsin-like serine protease superfamily, and contains a 15 residues N-terminal signal peptide and a conserved C-terminal domain. In comparison to other serine proteases, the catalytic triad were identified as His-98, Asp-149, and Ser-240. Quantitative real-time PCR (qPCR) showed a broad expression of the TLS gene in ten tested tissues. Time-course expression analysis demonstrated that the expression level of the TLS mRNA was significantly up-regulated in eight tested tissues (liver, intestine, gill, heart, axe foot, adductor muscle, kidney and gonad), but down-regulated in mantle and stomach after Aeromonas hydrophila injection. This is one of the results indicate that TLS may be involved in innate defense reactions against A. hydrophila in triangle-shell pearl mussel.


Subject(s)
Immunity, Innate , Serine Endopeptidases/genetics , Unionidae/genetics , Unionidae/immunology , Aeromonas hydrophila/physiology , Amino Acid Sequence , Animals , Base Sequence , Cloning, Molecular , DNA, Complementary/genetics , DNA, Complementary/metabolism , Molecular Sequence Data , Phylogeny , RNA, Messenger/genetics , RNA, Messenger/metabolism , Real-Time Polymerase Chain Reaction , Serine Endopeptidases/chemistry , Serine Endopeptidases/metabolism , Tissue Distribution , Unionidae/metabolism , Unionidae/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...