Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
J Thromb Thrombolysis ; 57(3): 520-530, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38281227

ABSTRACT

Drug-eluting stents (DESs) have become the first-line treatment for symptomatic peripheral arterial disease (PAD). Currently, there are many types of DESs on the market. The same type of DESs has different concentrations, and various drugs in them show uneven efficacy. The selection of DESs remains controversial. This study was aimed at comparing the long-term real-world outcomes of different DESs in the treatment of peripheral arterial occlusive disease (PAOD). The databases including Cochrane Library, Embase, and PubMed were searched with a time frame until March 25, 2023. The primary patency (PP) and target lesion revascularization (TLR) at 6 months were used as the primary endpoints. A total of 32 studies (5467 patients) were eligible. At the six-month follow-up, DES-Evero 1 ug/mm2 ranked first in terms of PP, with a significant difference from BMSs (RR [95% CI] = 1.6). DES-Siro 0.9 ug/mm2, DES-Siro 1.4 ug/mm2, DES-Siro 1.95 ug/mm2, DES-PTX 0.167 ug/mm2, DES-PTX 1 ug/mm2 and covered stents (CSs) showed significantly better PPs than BMSs. In terms of TLR, DES-Siro 0.9 ug/mm2 (0.31) ranked first, and DES-Evero 1 ug/mm2 ranked last. Among the treatment modalities for PAD, different DESs showed overall encouraging results in improving PP and TLR compared with BMSs. DES-Evero 1 ug/mm2 showed the best PP, but it had the highest reintervention rate at 6 months. Sirolimus-eluting stents were not always more effective with higher concentrations of sirolimus. Among various DESs, sirolimus-eluting stents and everolimus-eluting stents were superior to paclitaxel-eluting stents.


Subject(s)
Drug-Eluting Stents , Peripheral Arterial Disease , Humans , Bayes Theorem , Treatment Outcome , Stents , Sirolimus/therapeutic use , Peripheral Arterial Disease/surgery , Peripheral Arterial Disease/drug therapy
2.
Food Chem ; 438: 137958, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38000159

ABSTRACT

Methyl jasmonate (MeJA) is an important phytohormone that regulates the development of grape, but the effect and underpin mechanism of its preharvest application on secondary metabolites accumulation in postharvest grape berries are still unclear. In this study, the transcriptome profiles combined with metabolic components analysis were used to determine the effect of preharvest MeJA application on the quality formation of postharvest rose-flavor table grape Shine Muscat. The results indicated that preharvest MeJA treatment had no significant effect on TSS content, but had a down-regulation effect on the accumulation of reducing sugar and titratable acid in the berries. The content of chlorophylls and carotenoids in treated berries was significantly higher than that of the control. Many phenolic components, such as trans-ferulic acid, resveratrol, quercetin, and kaempferol, were sensitive to MeJA and their contents were also significantly higher than that of the control under MeJA treatments during the shelf life. Compared with other volatile aroma components, terpenoid components were more sensitive to preharvest MeJA signals, the content of which presented an overall upward trend with increasing MeJA concentration and prolonging storage time. Furthermore, most of the differentially expressed genes in the general phenylpropanoid pathway and terpenoid biosynthesis pathway were up-regulated responding to MeJA signals. The most upregulated regulatory factors, such as VvWRKY72, VvMYB24, and VvWRI1, may be involved in MeJA signal transduction and regulation. Preharvest MeJA may be an effective technique for enhancing the quality of postharvest Shine Muscat grape berries, with its positive effect on enhancing the characteristic aroma and nutritional components.


Subject(s)
Vitis , Vitis/metabolism , Fruit/metabolism , Oxylipins/pharmacology , Oxylipins/metabolism , Acetates/pharmacology , Acetates/metabolism , Cyclopentanes/pharmacology , Cyclopentanes/metabolism , Terpenes/metabolism
3.
Hortic Res ; 10(11): uhad205, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38046853

ABSTRACT

Teinturier grapes are characterized by the typical accumulation of anthocyanins in grape skin, flesh, and vegetative tissues, endowing them with high utility value in red wine blending and nutrient-enriched foods developing. However, due to the lack of genome information, the mechanism involved in regulating teinturier grape coloring has not yet been elucidated and their genetic utilization research is still insufficient. Here, the cultivar 'Yan73' was used for assembling the telomere-to-telomere (T2T) genome of teinturier grapes by combining the High Fidelity (HiFi), Hi-C and ultralong Oxford Nanopore Technologies (ONT) reads. Two haplotype genomes were assembled, at the sizes of 501.68 Mb and 493.38 Mb, respectively. In the haplotype 1 genome, the transposable elements (TEs) contained 32.77% of long terminal repeats (LTRs), while in the haplotype 2 genome, 31.53% of LTRs were detected in TEs. Furthermore, obvious inversions were identified in chromosome 18 between the two haplotypes. Transcriptome profiling suggested that the gene expression patterns in 'Cabernet Sauvignon' and 'Yan73' were diverse depending on tissues, developmental stages, and varieties. The transcription program of genes in the anthocyanins biosynthesis pathway between the two cultivars exhibited high similarity in different tissues and developmental stages, whereas the expression levels of numerous genes showed significant differences. Compared with other genes, the expression levels of VvMYBA1 and VvUFGT4 in all samples, VvCHS2 except in young shoots and VvPAL9 except in the E-L23 stage of 'Yan73' were higher than those of 'Cabernet Sauvignon'. Further sequence alignments revealed potential variant gene loci and structure variations of anthocyanins biosynthesis related genes and a 816 bp sequence insertion was found in the promoter of VvMYBA1 of 'Yan73' haplotype 2 genome. The 'Yan73' T2T genome assembly and comparative analysis provided valuable foundations for further revealing the coloring mechanism of teinturier grapes and the genetic improvement of grape coloring traits.

4.
Foods ; 12(22)2023 Nov 17.
Article in English | MEDLINE | ID: mdl-38002222

ABSTRACT

Protected cultivation is currently one of the main cultivation modes for grape production, but the long-term use of plastic film will have a certain negative impact on the light environment in vineyards, which in turn causes poor colouring, low sugar content and a lack of aroma in some red grape varieties. Supplementing light can be an effective way to mitigate these problems. In this study, vines of three red table grape varieties ('Summer Black', 'Xinyu' and 'Queen Nina') cultivated in a plastic greenhouse were supplemented with red, blue, white and red-blue light from veraison to harvest. All four supplemental light treatments increased the content of anthocyanins, sugars and volatile compounds in three grape varieties compared to CK (no supplemental lighting). Red-blue light treatment was the most favourable for the accumulation of anthocyanins and sugars, and the grapes treated with blue light had the highest content of volatile compounds. The grapes treated with red-blue light all obtained the highest composite scores via principal component analysis. For most of the sensory properties, the highest scores were obtained by the red-blue light-treated grapes. The results of this study will be useful in improving the colouring, sugar, and aroma content of grapes under protected cultivation.

5.
Environ Sci Pollut Res Int ; 30(55): 117624-117636, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37872341

ABSTRACT

Lack of carbon source is the main limiting factor in the denitrification of low C/N ratio wastewater in the constructed wetlands (CWs). Agricultural waste has been considered as a supplementary carbon source but research is still limited. To solve this problem, ferric carbon (Fe-C) + zeolite, Fe-C + gravel, and gravel were used as substrates to build CWs in this experiment, aiming to investigate the effects of different carbon sources (rice straw, corncobs, alkali-heated corncobs) on nitrogen removal performance and microbial community structure in CWs for low C/N wastewater. The results demonstrated that the microbial community and effluent nitrogen concentration of CWs were mainly influenced by the carbon source rather than the substrate. Alkali-heated corncobs significantly enhanced the removal of NO2--N, NH4+-N, NO3-N, and TN. Carbon sources addition increased microbial diversity. Alkali-heated corncobs addition significantly increased the abundance of heterotrophic denitrifying bacteria (Proteobacteria and Bacteroidota). Furthermore, alkali-heated corncobs addition increased the copy number of nirS, nosZ, and nirK genes while greenhouse gas fluxes were lower than common corncobs. In summary, alkali-heated corncobs can be considered as an effective carbon source.


Subject(s)
Wastewater , Zea mays , Denitrification , Wetlands , Nitrogen/analysis , Carbon/chemistry , Waste Disposal, Fluid/methods
6.
Sci Total Environ ; 874: 162451, 2023 May 20.
Article in English | MEDLINE | ID: mdl-36863587

ABSTRACT

Constructed wetlands (CWs) are considered a widely used cost-effective technology for pollutant removal. However, greenhouse gas emissions are a non-negligible problem in CWs. In this study, four laboratory-scale CWs were established to evaluate the effects of gravel (CWB), hematite (CWFe), biochar (CWC), and hematite + biochar (CWFe-C) as substrates on pollutants removal, greenhouse gas emissions, and associated microbial characteristics. The results showed that the biochar-amended CWs (CWC and CWFe-C) enhanced the removal efficiency of pollutants, with 92.53 % and 93.66 % of COD and 65.73 % and 64.41 % of TN removal, respectively. Both single and combined inputs of biochar and hematite significantly reduced CH4 and N2O fluxes, with the lowest average of CH4 flux obtained in CWC (5.99 ± 0.78 mg CH4 m-2 h-1) and the least N2O flux in CWFe-C (287.57 ± 44.84 µg N2O m-2 h-1). The substantial reduction of global warming potentials (GWP) was obtained in the applications of CWC (80.25 %) and CWFe-C (79.5 %) in biochar-amended CWs. The presence of biochar and hematite mitigated CH4 and N2O emissions by modifying microbial communities with higher ratios of pmoA/mcrA and nosZ genes abundances, as well as increasing the abundance of denitrifying bacteria (Dechloromona, Thauera and Azospira). This study demonstrated that biochar and the combined use of biochar and hematite could be the potential candidates as functional substrates for the efficient removal of pollutants and simultaneously reducing GWP emissions in the constructed wetlands.


Subject(s)
Greenhouse Gases , Wetlands , Greenhouse Gases/analysis , Nitrogen Dioxide , Nitrous Oxide/analysis , Methane/analysis
7.
Inorg Chem ; 62(8): 3646-3659, 2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36765458

ABSTRACT

Photocatalysis has long been considered a promising technology in green energy and environmental remediation. Since the poor performance of single components greatly limits the practical applications, the construction of heterostructures has become one of the most important technical means to improve the photocatalytic activity. In this work, based on the synthesis of oxygen-vacancy-rich ZnCr2O4 nanocrystals, ZnCr2O4/ZnIn2S4 composites are prepared via a low-temperature in situ growth, and the oxygen-vacancy-induced Z-scheme heterojunction is successfully constructed. The unique core-shell structure offers a tight interfacial contact, increases the specific surface area, and promotes the rapid charge transfer. Meanwhile, the oxygen-vacancy defect level not only enables wide-bandgap ZnCr2O4 to be excited by visible light enhancing the light absorption, but also provides necessary conditions for the construction of Z-scheme heterojunctions promoting charge separation and migration and allowing more reactive charges. The reaction rates of visible-light-driven photocatalytic hydrogen production (3.421 mmol g-1 h-1), hexavalent chromium reduction (0.124 min-1), and methyl orange degradation (0.067 min-1) of the composite reach 3.6, 6.5, and 8.4 times those of pure ZnIn2S4, and 15.8, 41.3, and 67.0 times those of pure ZnCr2O4, respectively. This work presents a novel option for constructing high-performance photocatalysts.

8.
Cardiovasc Ther ; 2022: 3889419, 2022.
Article in English | MEDLINE | ID: mdl-36474716

ABSTRACT

Objective: Small heat shock protein-1 (HSPB1) is a small heat shock protein that participates in many cellular processes and alleviates stress-induced cell injury. Autophagy protects cells from many types of stress and plays a key role in preventing stress in arteriosclerosis obliterans (ASO). However, the roles of HSPB1 in autophagy and apoptosis in the context of ASO pathogenesis remain unclear. Methods: In vivo and in vitro studies were used to determine whether HSPB1 is associated with ASO progression. The expression of HSPB1 was measured in normal and sclerotic blood vessels. The role of HSPB1 and its potential downstream signaling pathway were determined in VSMCs by overexpressing and silencing HSPB1. Results: A total of 91 ASO patients admitted to and treated at our hospital from Sep. 2020 to Sep. 2021 were selected, and plasma HSPB1 expression was assessed. We divided the patients with ASO into the grade I (n = 39), II (n = 29), III (n = 10), and IV (n = 13) groups according to Fontaine's classification. Plasma HSPB1 levels were markedly decreased in patients with grade III (n = 10) and IV (n = 13) ASO compared with patients with grade I ASO. Furthermore, HSPB1 expression was significantly decreased, and p62 and cleaved caspase-3 were increased in the sclerotic vasculature compared to the normal vasculature (p < 0.05). Overexpression of HSPB1 promoted apoptosis of VSMCs following ox-LDL treatment. Knockdown of HSPB1 led to a marked increase in the expression of LC3II and Beclin-1 in ox-LDL-stimulated VSMCs, whereas knockdown of HSPB1 attenuated these changes (p < 0.05). Importantly, overexpression of HSPB1 promoted the dephosphorylation of JNK in ox-LDL-stimulated VSMCs. Conversely, downregulation of HSPB1 induced the opposite change. Conclusion: Loss of HSPB1 promotes VSMC autophagy and inhibits VSMC apoptosis, which are associated with ASO. HSPB1 and its downstream signaling pathways could be potential therapeutic targets for ASO treatment.


Subject(s)
Heat-Shock Proteins, Small , Heat-Shock Proteins , Humans , Muscle, Smooth, Vascular , Autophagy , Apoptosis , Molecular Chaperones
9.
Curr Res Food Sci ; 5: 2114-2124, 2022.
Article in English | MEDLINE | ID: mdl-36387598

ABSTRACT

Cinnamaldehyde (CA) is a promising antimicrobial agent for the preservation of fruits and vegetables due to its excellent antibacterial activity. The application is however, limited by its unstable and volatile properties. A biocompatible carbon dots hybrid γ-cyclodextrin-based metal organic framework (CD/MOF) was developed by the seed-mediated method to improve the encapsulation and sustained continuous release of CA. CD/MOF-0.5 exhibited a CA loading efficiency of 28.42% and a sustained release duration time of more than 15 days at 8 oC. The release kinetics results showed that the release behavior of CD/MOF-0.5 fitted well with the Korsmeyer-Peppas release kinetics model, indicating that its sustained release is mainly controlled by diffusion. Both the Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopy analyses revealed that CD/MOF-0.5 and CA molecules were linked by hydrogen bonds. Due to the high sustained release performance, CA-loaded CD/MOF-0.5 considerably inhibited the growth of Escherichia coli, hence preventing the spoilage of fresh-cut cantaloupes. CD/MOF-0.5/CA treatment also maintained the qualities of the fresh-cut cantaloupes, prolonging their edibility to five days. This work provides a promising strategy for the prevention of spoilage in food industry.

10.
Huan Jing Ke Xue ; 43(8): 4136-4145, 2022 Aug 08.
Article in Chinese | MEDLINE | ID: mdl-35971711

ABSTRACT

The lack of carbon sources severely inhibits denitrification in wastewater with a low C/N ratio. Corncob and rice straw were chosen as supplementary carbon sources to bring into the wetland system to supplement the carbon sources needed for denitrification, and the enhancing effects of the two carbon sources on nitrogen removal from the wetland were studied. The cumulative release of carbon was in the order of rice straw[(145.17±9.44) mg·g-1]>corncob[(57.41±5.04) mg·g-1] based on the 11-day pure water extraction and release experiment, whereas the cumulative release of nitrogen was in the order of rice straw[(2.31±0.09) mg·g-1]>corncob[(0.66±0.08) mg·g-1]. The average carbon/nitrogen ratios released and accumulated by corncob and rice straw during the observation period were 94.78 and 63.64, respectively. Corncob was more suited as an additional carbon source than rice straw. COD concentrations in the effluent from the corncob and straw constructed wetlands were found to be below 50 mg·L-1 for the 58-day pilot test of subsurface flow constructed wetlands, except on days 8 to 12. The NO3--N removal rates of the corncob-added built wetlands were 93%-99% over the observation period, with good denitrification performance. In comparison, the lowest NO3--N removal rate of the constructed wetland with the addition of rice straw was only 76.8% at the late stage of operation, and the denitrification rate dropped dramatically. The control group removal rates of NO3--N were only 76.2%-77.7%, indicating a clear lack of carbon sources. The accumulation of NO2--N was also induced by a lack of carbon supply. NO2--N effluent concentrations were 2.5-6 times and 6-26 times higher in the constructed wetlands with rice straw and the control groups, respectively, than those in the wetlands constructed with corncob. The addition of corncob resulted in a more substantial reduction in NO2--N content in the constructed wetland than the addition of rice straw (P<0.05). The TN removal rates of wetlands constructed with corncob and rice straw and the control group were 83.75%-93.49%, 76.59%-78.85%, and 67.85%-72.56%, respectively, with significant differences among the three (P<0.01). Finally, pretreatment with dilute alkali heating raised the cumulative carbon release of corncob to (93.73±17.49) mg·g-1 and the carbon/nitrogen ratio to 175.8, significantly improving the carbon release performance of corncob and demonstrating that it is a suitable source of extra carbon.


Subject(s)
Oryza , Wetlands , Carbon , Denitrification , Nitrogen , Nitrogen Dioxide , Waste Disposal, Fluid/methods , Wastewater , Zea mays
11.
Food Chem ; 396: 133629, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-35839719

ABSTRACT

To improve the quality of grapes and wine in warm viticulture regions, the effects of pearl, red and black photoselective nets on the quality of grapes and wine were systematically investigated. Compared with the CK (open field), three nets improved the microclimate conditions and reduced grape sugar and wine alcohol levels. However, the nets differentially affected other quality profiles of the grapes and wine. The pearl net reduced the total flavanol contents in grapes and total aromatic volatiles in wine. The red net increased the total flavanol, tannin and total aromatic volatile contents in wine by approximately 40%, 95% and 10%, respectively, and the percentages for the black net were 30%, 45% and 3%, respectively. The red and pearl nets were more inclined to improve the taste and aroma sensory qualities of wine than the black net did. The red net had the highest comprehensive scores via principal component analysis.


Subject(s)
Vitis , Volatile Organic Compounds , Wine , Fruit/chemistry , Odorants/analysis , Polyphenols/analysis , Taste , Vitis/metabolism , Volatile Organic Compounds/analysis , Wine/analysis
12.
Food Chem ; 374: 131747, 2022 Apr 16.
Article in English | MEDLINE | ID: mdl-34875429

ABSTRACT

This study investigated the metabolic differences of 'Zicui' raisins produced at different drying temperatures (30 °C, 40 °C and 50 °C). Glucose, fructose, malic acid, shikimic acid and succinic acid contents were the highest in raisins dried at 50 °C. Compared with others, the drying temperature of 40 °C was more conducive to the accumulation of chalcones, dihydroflavones, dihydroflavonols, flavanols, flavonoid carbonosides, proanthocyanidins, and other phenols, while the drying temperature of 30 °C was more conducive to the accumulation of anthocyanins, flavonoid, and flavonols. Most volatile ketones and acids accumulated more in raisins produced at 30 °C, of which the content of 2,6-dimethyl-4-heptanone with sweet odour reached 70.34 µg/L, significantly higher than that in other raisins. Overall, the appropriate drying temperature should be selected according to the demand for specific nutritional or aromatic metabolites during raisins production.


Subject(s)
Vitis , Anthocyanins , Dehydration , Desiccation , Flavonoids , Humans , Temperature
13.
Food Chem ; 363: 130288, 2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34120043

ABSTRACT

Table grape is a popular fruit worldwide. The quality of the appearance of table grapes directly affects their commercial value. Table grape bunches are usually carefully managed during production. At different developmental stages, a large number of grape berries are pruned as waste for commercial appearance, which leads to wasted resources. Ultraviolet-C (UV-C) can regulate the accumulation of secondary metabolites in fruits. In this study, metabolomic profile was combined with transcriptomic analysis technology to explore the value of UV-C in improving the utilization of waste grapes. The berries of the 'Jumeigui' grape were subjected to UV-C radiation treatment in the green-berry stage, veraison stage, and maturation stage. The results showed that UV-C could brown grape berries and decrease their sugar content at different developmental stages. Compared with other samples, those treated with UV-C in the veraison stage had the most upregulated metabolites, while samples in the green-berry stage had the most down-regulated metabolites. UV-C promoted the accumulation of stilbenes and some flavonoids in the berries at each developmental stage (especially at the green-berry and veraison stages). Compared with other stages, UV-C treatment during the veraison stage led to the highest number of upregulated genes related to transcription factors, protein modification, indole-3-acetic acid (IAA), abscisic acid (ABA), gibberellin acid (GA), receptor kinases, and Ascorbic acid/Glutathione (Ascorb/Gluath). UV-C might promote the accumulation of phenolic components by upregulating the expression of their biosynthesis related genes. UV-C may be an effective in vitro approach for improving the application value of waste grape berries by enhancing the accumulation of the nutritious phenolic components.


Subject(s)
Vitis , Abscisic Acid , Fruit/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant , Transcriptome , Vitis/genetics
14.
J Am Soc Mass Spectrom ; 32(8): 1964-1975, 2021 Aug 04.
Article in English | MEDLINE | ID: mdl-34080873

ABSTRACT

We report the progress on an electron-activated dissociation (EAD) device coupled to a quadrupole TOF mass spectrometer (QqTOF MS) developed in our group. This device features a new electron beam optics design allowing up to 100 times stronger electron currents in the reaction cell. The electron beam current reached the space-charge limit of 0.5 µA at near-zero electron kinetic energies. These advances enable fast and efficient dissociation of various analytes ranging from singly charged small molecules to multiply protonated proteins. Tunable electron energy provides access to different fragmentation regimes: ECD, hot ECD, and electron-impact excitation of ions from organics (EIEIO). The efficiency of the device was tested on a wide range of precursor charge states. The EAD device was installed in a QqTOF MS employing a novel trap-and-release strategy facilitating spatial mass focusing of ions at the center of the TOF accelerator. This technique increased the sensitivity 6-10 times and allows for the first time comprehensive structural lipidomics on an LC time scale. The system was evaluated for other compound classes such as intact proteins and glycopeptides. Application of hot ECD for the analysis of glycopeptides resulted in rich fragmentation with predominantly peptide backbone fragments; however, glycan fragments attributed to the ECD process were also observed. A standard small protein ubiquitin (8.6 kDa) was sequenced with 90% cleavage coverage at spectrum accumulation times of 100 ms and 98% at 800 ms. Comparable cleavage coverage for a medium-size protein (carbonic anhydrase: 29 kDa) could be achieved, albeit with longer accumulation times.


Subject(s)
Glycopeptides/chemistry , Proteins/chemistry , Tandem Mass Spectrometry/instrumentation , Tandem Mass Spectrometry/methods , Biological Products/analysis , Biological Products/chemistry , Carbonic Anhydrase II/chemistry , Egg Yolk/chemistry , Electrons , Equipment Design , Glycopeptides/analysis , Ions/chemistry , Phosphatidylcholines/analysis , Phosphatidylcholines/chemistry , Proteins/analysis , Sensitivity and Specificity , Serum Albumin, Bovine/analysis , Serum Albumin, Bovine/chemistry , Ubiquitin/chemistry
15.
Foods ; 10(3)2021 Mar 23.
Article in English | MEDLINE | ID: mdl-33807052

ABSTRACT

Raisins are a popular and nutritious snack that is produced through the dehydration of postharvest grape berries under high temperature (HT). However, the response of the endogenous metabolism of white grape varieties to postharvest dehydration under different temperature have not been fully elucidated to date. In this study, the white grape cultivar 'Xiangfei' was chosen to investigate the effect of dehydration at 50 °C, 40 °C, and 30 °C on the transcriptomic programme and metabolite profiles of grape berries. Postharvest dehydration promoted the accumulation of soluble sugar components and organic acids in berries. The content of gallic acid and its derivatives increased during the dehydration process and the temperature of 40 °C was the optimal for flavonoids and proanthocyanidins accumulation. High-temperature dehydration stress might promote the accumulation of gallic acid by increasing the expression levels of their biosynthesis related genes and regulating the production of NADP+ and NADPH. Compared with that at 30 °C, dehydration at 40 °C accelerated the transcription programme of 7654 genes and induced the continuous upregulation of genes related to the heat stress response and redox homeostasis in each stage. The results of this study indicate that an appropriate dehydration temperature should be selected and applied when producing polyphenols-rich raisins.

16.
Foods ; 10(3)2021 Mar 16.
Article in English | MEDLINE | ID: mdl-33809507

ABSTRACT

In this study, ultraviolet-C (UV-C) was utilized to improve the quality of post-harvest grape berries, and the transcriptomic and metabolomic basis of this improvement was elucidated. Berries of the red grape variety 'Zicui' and the white variety 'Xiangfei' were chosen to evaluate the effect of short- and long-term UV-C irradiation. Post-harvest UV-C application promoted malondialdehyde (MDA) and proline accumulation, and reduced the soluble solid content in berries. Both the variety and duration of irradiation could modulate the transcriptomic and metabolomic responses of berries to UV-C. Compared with the control, the differentially expressed genes (DEGs) identified under UV-C treatment were enriched in pathways related to metabolite accumulation, hormone biosynthesis and signal transduction, and reactive oxygen species (ROS) homeostasis. Flavonoid biosynthesis and biosynthesis of other secondary metabolites were the shared pathways enriched with differential metabolites. After long-term UV-C irradiation, cis-resveratrol accumulated in the berries of the two varieties, while the differential chalcone, dihydroflavone, flavonoid, flavanol, and tannin components primarily accumulated in 'Xiangfei', and some flavonols and anthocyanins primarily accumulated in 'Zicui'. Based on an exhaustive survey, we made a summary for the effect of UV-C in regulating the quality development of post-harvest grape berries. The results of this study may help to elucidate the mechanism by which UV-C functions and support its efficient application.

17.
Food Chem ; 351: 129308, 2021 Jul 30.
Article in English | MEDLINE | ID: mdl-33652297

ABSTRACT

This study investigated the effects of foliar application of fulvic acid antitranspirant (FA-AT) on Cabernet Sauvignon (CS) and Riesling grapes and wines in a warm viticulture region of China. FA-AT controlled the contents of total soluble solids, fructose and glucose in mature grapes and alcohol in wines. FA-AT improved total phenols and flavonoids in Riesling grapes, and total tannin and individual flavanols in CS grapes and wine, while reducing total individual phenolic acids and flavonols in CS wine. Increased volatiles in CS grapes (hexyl acetate, linalool) and wine (isoamyl alcohol, 1-hexanol, 2-phenylethanol) detected by SPME-GC-MS can contribute to the fruity and floral aroma. FA-AT reduced the accumulation of anthocyanins in CS grapes and wine without an eventual reduction in the tonality of wine by sensory analysis, and improved the taste and balance of Riesling wine. Overall, FA-AT can improve the quality of grapes and wines produced in warm viticulture regions.


Subject(s)
Agriculture/methods , Benzopyrans/chemistry , Fruit/chemistry , Sugars/analysis , Vitis/chemistry , Wine/analysis , Anthocyanins/analysis , China , Flavonoids/analysis , Flavonols/analysis , Gas Chromatography-Mass Spectrometry , Odorants/analysis , Phenols/analysis , Tannins/analysis , Volatile Organic Compounds/analysis
18.
Hortic Res ; 7(1): 204, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33328445

ABSTRACT

Clarifying the stress signal transduction pathway would be helpful for understanding the abiotic stress resistance mechanism in apple (Malus × domestica Borkh.) and could assist in the development of new varieties with high stress tolerance by genetic engineering. The key NAC transcription factor SND1, which is involved in the lignin biosynthesis process in apple, was functionally analyzed. The results of the stress treatments indicated that MdSND1 could be induced by salt, mannitol and ABA. Compared with wild-type GL-3 plants, MdSND1-overexpressing apple plants with greater antioxidant capacity and lignin were more resistant to salt and simulated osmotic stress, while RNAi plants were more vulnerable. Additionally, molecular experiments confirmed that MdSND1 could regulate the biosynthesis of lignin by activating the transcription of MdMYB46/83. Moreover, genes known to be involved in the stress signal transduction pathway (MdAREB1A, MdAREB1B, MdDREB2A, MdRD29A, and MdRD22) were screened for their close correlations with the expression of MdSND1 and the response to salt and osmotic stress. Multiple verification tests further demonstrated that MdSND1 could directly bind to these gene promoters and activate their transcription. The above results revealed that MdSND1 is directly involved in the regulation of lignin biosynthesis and the signal transduction pathway involved in the response to both salt and osmotic stress in apple.

19.
Front Plant Sci ; 10: 994, 2019.
Article in English | MEDLINE | ID: mdl-31417600

ABSTRACT

The vegetative phase change in flowering plants is controlled by microRNA156 (miR156) under transcriptional regulation. However, the developmental signals upstream of miR156 are not well understood. The glutathione/glutathione disulfide (GSH/GSSG) ratios and GSH levels decline significantly during phase change, which is consistent with miR156 expression in apple (Malus domestica Borkh.). Here, we found that the content of protein conjugated glutathione was remarkably higher in chloroplasts and nuclei of adult than juvenile phase apple hybrids. The decrease in miR156 expression was most relevant to the activities of serine acetyltransferase (SAT) and soluble γ-glutamyl transpeptidase (GGT), and the expressions of MdGGT1 or MdSATs. Transgenic apples over-expressing MdMIR156 or miR156-mimetic (MIM156) did not alter MdGGT1 expression or the soluble GGT activity. Inhibition of GGT activity with serine-borate complex or acivicin led to significant reduction in GSH content, the GSH/GSSG ratio, and the expressions of MdMIR156a5, MdMIR156a12, and miR156. Depletion of GSH with diethyl maleate without altering GGT activity caused a dramatic decrease in the expression of MdMIR156a5, MdMIR156a12, and miR156. Manipulating GGT activity and GSH homeostasis by transgenic over-expressing or RNAi MdGGT1 increased or decreased MdMIR156a5 and MdMIR156a12 levels, respectively. These data provided novel evidence that MdGGT1 participates in transcriptional level of transcription regulation of miR156 precursors during ontogenesis. HIGHLIGHTS: - MdGGT1 affects thiol redox status and indirectly participates in the regulation of miR156 expression during vegetative phase change.

20.
Plant Biotechnol J ; 17(12): 2341-2355, 2019 12.
Article in English | MEDLINE | ID: mdl-31077628

ABSTRACT

To expand the cultivation area of apple (Malus×domestica Borkh.) and select resistant varieties by genetic engineering, it is necessary to clarify the mechanism of salt and osmotic stress tolerance in apple. The MdMYB46 transcription factor was identified, and the stress treatment test of MdMYB46-overexpressing and MdMYB46-RNAi apple lines indicated that MdMYB46 could enhance the salt and osmotic stress tolerance in apple. In transgenic Arabidopsis and apple, MdMYB46 promoted the biosynthesis of secondary cell wall and deposition of lignin by directly binding to the promoter of lignin biosynthesis-related genes. To explore whether MdMYB46 could coordinate stress signal transduction pathways to cooperate with the formation of secondary walls to enhance the stress tolerance of plants, MdABRE1A, MdDREB2A and dehydration-responsive genes MdRD22 and MdRD29A were screened out for their positive correlation with osmotic stress, salt stress and the transcriptional level of MdMYB46. The further verification test demonstrated that MdMYB46 could activate their transcription by directly binding to the promoters of these genes. The above results indicate that MdMYB46 could enhance the salt and osmotic stress tolerance in apple not only by activating secondary cell wall biosynthesis pathways, but also by directly activating stress-responsive signals.


Subject(s)
Arabidopsis Proteins/physiology , Malus/physiology , Osmotic Pressure , Salt-Tolerant Plants/physiology , Stress, Physiological , Transcription Factors/physiology , Arabidopsis , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant , Malus/genetics , Plant Proteins/genetics , Plant Proteins/physiology , Plants, Genetically Modified , Salt-Tolerant Plants/genetics , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...