Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 10(20): eadm9326, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758792

ABSTRACT

Intellectual disability (ID) affects ~2% of the population and ID-associated genes are enriched for epigenetic factors, including those encoding the largest family of histone lysine acetyltransferases (KAT5-KAT8). Among them is KAT6A, whose mutations cause KAT6A syndrome, with ID as a common clinical feature. However, the underlying molecular mechanism remains unknown. Here, we find that KAT6A deficiency impairs synaptic structure and plasticity in hippocampal CA3, but not in CA1 region, resulting in memory deficits in mice. We further identify a CA3-enriched gene Rspo2, encoding Wnt activator R-spondin 2, as a key transcriptional target of KAT6A. Deletion of Rspo2 in excitatory neurons impairs memory formation, and restoring RSPO2 expression in CA3 neurons rescues the deficits in Wnt signaling and learning-associated behaviors in Kat6a mutant mice. Collectively, our results demonstrate that KAT6A-RSPO2-Wnt signaling plays a critical role in regulating hippocampal CA3 synaptic plasticity and cognitive function, providing potential therapeutic targets for KAT6A syndrome and related neurodevelopmental diseases.


Subject(s)
Cognition , Histone Acetyltransferases , Wnt Signaling Pathway , Animals , Mice , Histone Acetyltransferases/metabolism , Histone Acetyltransferases/genetics , CA3 Region, Hippocampal/metabolism , CA3 Region, Hippocampal/pathology , Thrombospondins/metabolism , Thrombospondins/genetics , Thrombospondins/deficiency , Neuronal Plasticity , Mice, Knockout
2.
Sci Adv ; 9(13): eade9931, 2023 03 29.
Article in English | MEDLINE | ID: mdl-36989353

ABSTRACT

Following peripheral nerve injury, extracellular adenosine 5'-triphosphate (ATP)-mediated purinergic signaling is crucial for spinal cord microglia activation and neuropathic pain. However, the mechanisms of ATP release remain poorly understood. Here, we show that volume-regulated anion channel (VRAC) is an ATP-releasing channel and is activated by inflammatory mediator sphingosine-1-phosphate (S1P) in microglia. Mice with microglia-specific deletion of Swell1 (also known as Lrrc8a), a VRAC essential subunit, had reduced peripheral nerve injury-induced increase in extracellular ATP in spinal cord. The mutant mice also exhibited decreased spinal microgliosis, dorsal horn neuronal hyperactivity, and both evoked and spontaneous neuropathic pain-like behaviors. We further performed high-throughput screens and identified an FDA-approved drug dicumarol as a novel and potent VRAC inhibitor. Intrathecal administration of dicumarol alleviated nerve injury-induced mechanical allodynia in mice. Our findings suggest that ATP-releasing VRAC in microglia is a key spinal cord determinant of neuropathic pain and a potential therapeutic target for this debilitating disease.


Subject(s)
Neuralgia , Peripheral Nerve Injuries , Mice , Animals , Microglia , Dicumarol/therapeutic use , Neuralgia/drug therapy , Neuralgia/etiology , Spinal Cord , Adenosine Triphosphate/pharmacology , Membrane Proteins
3.
Neuron ; 111(7): 1104-1117.e6, 2023 04 05.
Article in English | MEDLINE | ID: mdl-36681074

ABSTRACT

Addictive drugs increase ventral tegmental area (VTA) dopamine (DA) neuron activity through distinct cellular mechanisms, one of which involves disinhibition of DA neurons by inhibiting local GABA neurons. How drugs regulate VTA GABA neuron activity and drive addictive behaviors remains poorly understood. Here, we show that astrocytes control VTA GABA neuron activity in cocaine reward via tonic inhibition in mice. Repeated cocaine exposure potentiates astrocytic tonic GABA release through volume-regulated anion channels (VRACs) and augments tonic inhibition of VTA GABA neurons, thus downregulating their activities and disinhibiting nucleus accumbens (NAc) projecting DA neurons. Attenuation of tonic inhibition by either deleting Swell1 (Lrrc8a), the obligatory subunit of VRACs, in VTA astrocytes or disrupting δ subunit of GABAA receptors in VTA GABA neurons reduces cocaine-evoked changes in neuron activity, locomotion, and reward behaviors in mice. Together, our findings reveal the critical role of astrocytes in regulating the VTA local circuit and cocaine reward.


Subject(s)
Cocaine , Mice , Animals , Cocaine/pharmacology , Ventral Tegmental Area/physiology , Astrocytes , Dopaminergic Neurons , Receptors, GABA-A , gamma-Aminobutyric Acid , Reward , Membrane Proteins
4.
bioRxiv ; 2023 Jan 08.
Article in English | MEDLINE | ID: mdl-36712065

ABSTRACT

Following peripheral nerve injury, extracellular ATP-mediated purinergic signaling is crucial for spinal cord microglia activation and neuropathic pain. However, the mechanisms of ATP release remain poorly understood. Here, we show that volume-regulated anion channel (VRAC) is an ATP-releasing channel and is activated by inflammatory mediator sphingosine-1-phosphate (S1P) in microglia. Mice with microglia-specific deletion of Swell1 (also known as Lrrc8a), a VRAC essential subunit, had reduced peripheral nerve injury-induced increase in extracellular ATP in spinal cord. The mutant mice also exhibited decreased spinal microgliosis, dorsal horn neuronal hyperactivity, and both evoked and spontaneous neuropathic pain-like behaviors. We further performed high-throughput screens and identified an FDA-approved drug dicumarol as a novel and potent VRAC inhibitor. Intrathecal administration of dicumarol alleviated nerve injury-induced mechanical allodynia in mice. Our findings suggest that ATP-releasing VRAC in microglia is a key spinal cord determinant of neuropathic pain and a potential therapeutic target for this debilitating disease.

5.
Elife ; 112022 12 22.
Article in English | MEDLINE | ID: mdl-36547405

ABSTRACT

Desensitization is a common property of membrane receptors, including ion channels. The newly identified proton-activated chloride (PAC) channel plays an important role in regulating the pH and size of organelles in the endocytic pathway, and is also involved in acid-induced cell death. However, how the PAC channel desensitizes is largely unknown. Here, we show by patch-clamp electrophysiological studies that PAC (also known as TMEM206/ASOR) undergoes pH-dependent desensitization upon prolonged acid exposure. Through structure-guided and comprehensive mutagenesis, we identified several residues critical for PAC desensitization, including histidine (H) 98, glutamic acid (E) 94, and aspartic acid (D) 91 at the extracellular extension of the transmembrane helix 1 (TM1), as well as E107, D109, and E250 at the extracellular domain (ECD)-transmembrane domain (TMD) interface. Structural analysis and molecular dynamic simulations revealed extensive interactions between residues at the TM1 extension and those at the ECD-TMD interface. These interactions likely facilitate PAC desensitization by stabilizing the desensitized conformation of TM1, which undergoes a characteristic rotational movement from the resting and activated states to the desensitized state. Our studies establish a new paradigm of channel desensitization in this ubiquitously expressed ion channel and pave the way for future investigation of its relevance in cellular physiology and disease.


Subject(s)
Chlorides , Protons , Chlorides/metabolism , Chloride Channels/genetics , Chloride Channels/metabolism , Protein Domains
6.
Neuron ; 110(18): 2891-2893, 2022 09 21.
Article in English | MEDLINE | ID: mdl-36137517

ABSTRACT

Sensing the mechanical microenvironment is an essential aspect of all life, yet its mechanism remains poorly understood. In this issue of Neuron, Chi et al. reveal the role of astrocyte mechanosensitive Piezo1 channel in adult neurogenesis and cognitive function.


Subject(s)
Astrocytes , Ion Channels , Astrocytes/metabolism , Brain/metabolism , Ion Channels/metabolism , Mechanotransduction, Cellular/physiology , Neurogenesis
7.
Proc Natl Acad Sci U S A ; 119(31): e2200727119, 2022 08 02.
Article in English | MEDLINE | ID: mdl-35878032

ABSTRACT

In response to acidic pH, the widely expressed proton-activated chloride (PAC) channel opens and conducts anions across cellular membranes. By doing so, PAC plays an important role in both cellular physiology (endosome acidification) and diseases associated with tissue acidosis (acid-induced cell death). Despite the available structural information, how proton binding in the extracellular domain (ECD) leads to PAC channel opening remains largely unknown. Here, through comprehensive mutagenesis and electrophysiological studies, we identified several critical titratable residues, including two histidine residues (H130 and H131) and an aspartic acid residue (D269) at the distal end of the ECD, together with the previously characterized H98 at the transmembrane domain-ECD interface, as potential pH sensors for human PAC. Mutations of these residues resulted in significant changes in pH sensitivity. Some combined mutants also exhibited large basal PAC channel activities at neutral pH. By combining molecular dynamics simulations with structural and functional analysis, we further found that the ß12 strand at the intersubunit interface and the associated "joint region" connecting the upper and lower ECDs allosterically regulate the proton-dependent PAC activation. Our studies suggest a distinct pH-sensing and gating mechanism of this new family of ion channels sensitive to acidic environment.


Subject(s)
Chloride Channels , Chlorides , Protons , Aspartic Acid/chemistry , Chloride Channels/genetics , Chloride Channels/metabolism , Chlorides/metabolism , Electrophysiological Phenomena , Histidine/chemistry , Humans , Hydrogen-Ion Concentration , Mutagenesis
8.
Am J Physiol Renal Physiol ; 316(5): F993-F1005, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30838872

ABSTRACT

We have previously demonstrated that loss of miR-17~92 in nephron progenitors in a mouse model results in renal hypodysplasia and chronic kidney disease. Clinically, decreased congenital nephron endowment because of renal hypodysplasia is associated with an increased risk of hypertension and chronic kidney disease, and this is at least partly dependent on the self-renewal of nephron progenitors. Here, we present evidence for a novel molecular mechanism regulating the self-renewal of nephron progenitors and congenital nephron endowment by the highly conserved miR-17~92 cluster. Whole transcriptome sequencing revealed that nephron progenitors lacking this cluster demonstrated increased Cftr expression. We showed that one member of the cluster, miR-19b, is sufficient to repress Cftr expression in vitro and that perturbation of Cftr activity in nephron progenitors results in impaired proliferation. Together, these data suggest that miR-19b regulates Cftr expression in nephron progenitors, with this interaction playing a role in appropriate nephron progenitor self-renewal during kidney development to generate normal nephron endowment.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , MicroRNAs/metabolism , Nephrons/metabolism , Stem Cells/metabolism , Animals , Cell Movement , Cell Proliferation , Cell Self Renewal , Cells, Cultured , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Gene Expression Regulation, Developmental , Mice, Inbred C57BL , Mice, Knockout , MicroRNAs/genetics , Nephrons/embryology , Organogenesis , Signal Transduction
9.
Sci Data ; 5: 180218, 2018 11 13.
Article in English | MEDLINE | ID: mdl-30422124

ABSTRACT

MicroRNAs (miRNAs) are small non-coding RNAs that are essential for the regulation of gene expression and play critical roles in human health and disease. Here we present comprehensive miRNA profiling data for mouse nephrogenic mesenchymal progenitors, a population of cells enriched for nephron progenitors that give rise to most cell-types of the nephron, the functional unit of the kidney. We describe a miRNA expression in nephrogenic mesenchymal progenitors, with 162 miRNAs differentially expressed in progenitors when compared to whole kidney. We also annotated 49 novel miRNAs in the developing kidney and experimentally validated 4 of them. Our data are available as a public resource, so that it can be integrated into future studies and analyzed in the context of other functional and epigenomic data in kidney development. Specifically, it will be useful in the effort to shed light on molecular mechanisms underlying processes essential for normal kidney development, like nephron progenitor specification, self-renewal and differentiation.


Subject(s)
Nephrons/embryology , Nephrons/metabolism , RNA, Small Untranslated/biosynthesis , Animals , Gene Expression Regulation, Developmental , Kidney/embryology , Kidney/metabolism , Mesoderm/metabolism , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...