Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 348: 123813, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38537801

ABSTRACT

The removal of trace amounts of antibiotics from water environments while simultaneously avoiding potential environmental hazards during the treatment is still a challenge. In this work, green, harmless, and novel asymmetric mesoporous TiO2 (A-mTiO2) was combined with peroxodisulfate (PDS) as active components in a controlled-release material (CRM) system for the degradation of tetracycline (TC) in the dark. The formation of reactive oxygen species (ROS) and the degradation pathways of TC during catalytic PDS activation by A-mTiO2 powder catalysts and the CRMs were thoroughly studied. Due to its asymmetric mesoporous structure, there were abundant Ti3+/Ti4+ couples and oxygen vacancies in A-mTiO2, resulting in excellent activity in the activation of PDS for TC degradation, with a mineralization rate of 78.6%. In CRMs, ROS could first form during PDS activation by A-mTiO2 and subsequently dissolve from the CRMs to degrade TC in groundwater. Due to the excellent performance and good stability of A-mTiO2, the resulting constructed CRMs could effectively degrade TC in simulated groundwater over a long period (more than 20 days). From electron paramagnetic resonance analysis and TC degradation experiments, it was interesting to find that the ROS formed during PDS activation by A-mTiO2 powder catalysts and CRMs were different, but the degradation pathways for TC were indeed similar in the two systems. In PDS activation by A-mTiO2, besides the free hydroxyl radical (·OH), singlet oxygen (1O2) worked as a major ROS participating in TC degradation. For CRMs, the immobilization of A-mTiO2 inside CRMs made it difficult to capture superoxide radicals (·O2-), and continuously generate 1O2. In addition, the formation of sulfate radicals (·SO4-), and ·OH during the release process of CRMs was consistent with PDS activation by the A-mTiO2 powder catalyst. The eco-friendly CRMs had a promising potential for practical application in the remediation of organic pollutants from groundwater.


Subject(s)
Anti-Bacterial Agents , Tetracycline , Reactive Oxygen Species , Delayed-Action Preparations , Powders , Anti-Bacterial Agents/chemistry , Tetracycline/chemistry
2.
Sci Total Environ ; 846: 157217, 2022 Nov 10.
Article in English | MEDLINE | ID: mdl-35810910

ABSTRACT

Controlled release materials (CRMs) are an emerging oxidant delivery technique for in-situ chemical oxidation (ISCO) that solve the problems of contaminant rebound, backflow and wake during groundwater remediation. CRMs were fabricated using ordered mesoporous manganese oxide (O-MnOx) and sodium persulfate (Na2S2O8) as active components, for the removal of antibiotic pollutants from groundwater. In both static and dynamic groundwater environments, persulfate can first be activated by O-MnOx within CRMs to form sulfate radicals and hydroxyl radicals, with these radicals subsequently dissolving out from the CRMs and degrading tetracycline (TC). Due to their excellent persulfate activation performance and good stability, the constructed CRMs could effectively degrade TC in both static and dynamic simulated groundwater systems over a long period (>21 days). The TC removal rate reached >80 %. Changing the added content of O-MnOx and persulfate could effectively regulate the performance of the CRMs during TC degradation in groundwater. The process and products of TC degradation in the dynamic groundwater system were the same as in the static groundwater system. Due to the strong oxidizing properties of sulfate radicals and hydroxyl radicals, TC molecules were completely mineralized within the groundwater systems, resulting in only trace levels of degradation products being detectable, with low- or non-toxicity. Therefore, the CRMs constructed in this study exhibited good potential for practical application in the remediation of organic pollutants from both static and dynamic groundwater environments.


Subject(s)
Groundwater , Water Pollutants, Chemical , Anti-Bacterial Agents , Delayed-Action Preparations , Groundwater/chemistry , Hydroxyl Radical , Oxidation-Reduction , Sulfates/chemistry , Tetracycline , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL