Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 90
Filter
Add more filters










Publication year range
1.
Small ; : e2400558, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38570734

ABSTRACT

An electrochemical capacitor configuration extends its operational potential window by leveraging diverse charge storage mechanisms on the positive and negative electrodes. Beyond harnessing capacitive, pseudocapacitive, or Faradaic energy storage mechanisms and enhancing electrochemical performance at high rates, achieving a balance of stored charge across electrodes poses a significant challenge over a wide range of charge-discharge currents or sweep rates. Consequently, fabricating hybrid and asymmetric supercapacitors demands precise electrochemical evaluations of electrode materials and the development of a reliable methodology. This work provides an overview of fundamental aspects related to charge-storage mechanisms and electrochemical methods, aiming to discern the contribution of each process. Subsequently, the electrochemical properties, including the working potential windows, rate capability profiles, and stabilities, of various families of electrode materials are explored. It is then demonstrated, how charge balancing between electrodes falters across a broad range of charge-discharge currents or sweep rates. Finally, a methodology for achieving charge balance in hybrid and asymmetric supercapacitors is proposed, outlining multiple conditions dependent on loaded mass and charge-discharge current. Two step-by-step tutorials and model examples for applying this methodology are also provided. The proposed methodology is anticipated to stimulate continued dialogue among researchers, fostering advancements in achieving stable and high-performance supercapacitor devices.

2.
Small ; : e2400724, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38639018

ABSTRACT

The lack of intrinsic active sites for photocatalytic CO2 reduction reaction (CO2RR) and fast recombination rate of charge carriers are the main obstacles to achieving high photocatalytic activity. In this work, a novel phosphorus and boron binary-doped graphitic carbon nitride, highly porous material that exhibits powerful photocatalytic CO2 reduction activity, specifically toward selective CO generation, is disclosed. The coexistence of Lewis-acidic and Lewis-basic sites plays a key role in tuning the electronic structure, promoting charge distribution, extending light-harvesting ability, and promoting dissociation of excitons into active carriers. Porosity and dual dopants create local chemical environments that activate the pyridinic nitrogen atom between the phosphorus and boron atoms on the exposed surface, enabling it to function as an active site for CO2RR. The P-N-B triad is found to lower the activation barrier for reduction of CO2 by stabilizing the COOH reaction intermediate and altering the rate-determining step. As a result, CO yield increased to 22.45 µmol g-1 h-1 under visible light irradiation, which is ≈12 times larger than that of pristine graphitic carbon nitride. This study provides insights into the mechanism of charge carrier dynamics and active site determination, contributing to the understanding of the photocatalytic CO2RR mechanism.

3.
ACS Appl Mater Interfaces ; 16(12): 14770-14780, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38489232

ABSTRACT

Metal-semiconductor nanocomposites have emerged as a viable strategy for concurrently tailoring both thermal and electronic transport properties of established thermoelectric materials, ultimately achieving synergistic performance. In this investigation, a series of nanocomposite thin films were synthesized, embedding metallic cobalt telluride (CoTe2) nanophase within the nanocrystalline ternary skutterudite (Co(Ge1.22Sb0.22)Te1.58 or CGST) matrix. Our approach harnessed composition fluctuation-induced phase separation and in situ growth during thermal annealing to seamlessly integrate the metallic phase. The distinctive band structures of both materials have developed an ohmic-type contact characteristic at the interface, which raised carrier density considerably yet negligibly affected the mobility counterpart, leading to a substantial improvement in electrical conductivity. The intricate balance in transport properties is further influenced by the metallic CoTe2 phase's role in diminishing lattice thermal conductivity. The presence of the metallic phase instigates enhanced phonon scattering at the interface boundaries. Consequently, a 2-fold enhancement in the thermoelectric figure of merit (zT ∼ 1.30) is attained with CGST-7 wt. % CoTe2 nanocomposite film at 655 K compared to that of pristine CGST.

4.
Small Methods ; : e2301674, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38284329

ABSTRACT

Double-atom site catalysts (DASs) have emerged as a recent trend in the oxygen reduction reaction (ORR), thereby modifying the intermediate adsorption energies and increasing the activity. However, the lack of an efficient dual atom site to improve activity and durability has limited these catalysts from widespread application. Herein, the nitrogen-coordinated iron and tin-based DASs (Fe-Sn-N/C) catalyst are synthesized for ORR. This catalyst has a high activity with ORR half-wave potentials (E1/2 ) of 0.92 V in alkaline, which is higher than those of the state-of-the-art Pt/C (E1/2  = 0.83 V), Fe-N/C (E1/2  = 0.83 V), and Sn-N/C (E1/2  = 0.77 V). Scanning electron transmission microscopy analysis confirmed the atomically distributed Fe and Sn sites on the N-doped carbon network. X-ray absorption spectroscopy analysis revealed the charge transfer between Fe and Sn. Both experimental and theoretical results indicate that the Sn with Fe-NC (Fe-Sn-N/C) induces charge redistribution, weakening the binding strength of oxygenated intermediates and leading to improved ORR activity. This study provides the synergistic effects of DASs catalysts and addresses the impacts of P-block elements on d-block transition metals in ORR.

5.
Nat Commun ; 15(1): 707, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38267492

ABSTRACT

Designing an organic polymer photocatalyst for efficient hydrogen evolution with visible and near-infrared (NIR) light activity is still a major challenge. Unlike the common behavior of gradually increasing the charge recombination while shrinking the bandgap, we present here a series of polymer nanoparticles (Pdots) based on ITIC and BTIC units with different π-linkers between the acceptor-donor-acceptor (A-D-A) repeated moieties of the polymer. These polymers act as an efficient single polymer photocatalyst for H2 evolution under both visible and NIR light, without combining or hybridizing with other materials. Importantly, the difluorothiophene (ThF) π-linker facilitates the charge transfer between acceptors of different repeated moieties (A-D-A-(π-Linker)-A-D-A), leading to the enhancement of charge separation between D and A. As a result, the PITIC-ThF Pdots exhibit superior hydrogen evolution rates of 279 µmol/h and 20.5 µmol/h with visible (>420 nm) and NIR (>780 nm) light irradiation, respectively. Furthermore, PITIC-ThF Pdots exhibit a promising apparent quantum yield (AQY) at 700 nm (4.76%).

6.
Small ; 19(45): e2303598, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37434392

ABSTRACT

Atomically dispersed iron sites on nitrogen-doped carbon (Fe-NC) are the most active Pt-group-metal-free catalysts for oxygen reduction reaction (ORR). However, due to oxidative corrosion and the Fenton reaction, Fe-NC catalysts are insufficiently active and stable. Herein, w e demonstrated that the axial Cl-modified Fe-NC (Cl-Fe-NC) electrocatalyst is active and stable for the ORR in acidic conditions with high H2 O2 tolerance. The Cl-Fe-NC exhibits excellent ORR activity, with a high half-wave potential (E1/2 ) of 0.82 V versus a reversible hydrogen electrode (RHE), comparable to Pt/C (E1/2 = 0.85 V versus RHE) and better than Fe-NC (E1/2 = 0.79 V versus RHE). X-ray absorption spectroscopy analysis confirms that chlorine is axially integrated into the FeN4. More interestingly, compared to Fe-NC, the Fenton reaction is markedly suppressed in Cl-Fe-NC. In situ electrochemical impedance spectroscopy reveals that Cl-Fe-NC provides efficient electron transfer and faster reaction kinetics than Fe-NC. Density functional theory calculations reveal that incorporating Cl into FeN4 can drive the electron density delocalization of the FeN4 site, leading to a moderate adsorption free energy of OH* (∆GOH* ), d-band center, and a high onset potential, and promotes the direct four-electron-transfer ORR with weak H2 O2 binding ability compared to Cl-free FeN4, indicating superior intrinsic ORR activity.

7.
Small Methods ; 7(10): e2300234, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37401196

ABSTRACT

Electrochemical reduction of oxygen into hydrogen peroxide in an acidic medium offers an energy-efficient and green H2 O2 synthesis as an alternative to the energy-intensive anthraquinone process. Unfortunately, high overpotential, low production rates, and fierce competition from traditional four-electron reduction limit it. In this study, a metalloenzyme-like active structure is mimicked in carbon-based single-atom electrocatalysts for oxygen reduction to H2 O2 . Using a carbonization strategy, the primary electronic structure of the metal center with nitrogen and oxygen coordination is modulated, followed by epoxy oxygen functionalities close to the metal active sites. In an acidic medium, CoNOC active structures proceed with greater than 98% H2 O2 selectivity (2e- /2H+ ) rather than CoNC active sites that are selective to H2 O (4e- /4H+ ). Among all MNOC (M = Fe, Co, Mn, and Ni) single-atom electrocatalysts, the CoNOC is the most selective (> 98%) for H2 O2 production, with a mass activity of 10 A g-1 at 0.60 V vs. RHE. X-ray absorption spectroscopy is used to identify the formation of unsymmetrical MNOC active structures. Experimental results are also compared to density functional theory calculations, which revealed that the structure-activity relationship of the epoxy-surrounded CoNOC active structure reaches optimum (ΔG*OOH ) binding energies for high selectivity.

8.
Nat Commun ; 13(1): 1256, 2022 Mar 10.
Article in English | MEDLINE | ID: mdl-35273184

ABSTRACT

Ascertaining the function of in-plane intrinsic defects and edge atoms is necessary for developing efficient low-dimensional photocatalysts. We report the wireless photocatalytic CO2 reduction to CH4 over reconstructed edge atoms of monolayer 2H-WSe2 artificial leaves. Our first-principles calculations demonstrate that reconstructed and imperfect edge configurations enable CO2 binding to form linear and bent molecules. Experimental results show that the solar-to-fuel quantum efficiency is a reciprocal function of the flake size. It also indicates that the consumed electron rate per edge atom is two orders of magnitude larger than the in-plane intrinsic defects. Further, nanoscale redox mapping at the monolayer WSe2-liquid interface confirms that the edge is the most preferred region for charge transfer. Our results pave the way for designing a new class of monolayer transition metal dichalcogenides with reconstructed edges as a non-precious co-catalyst for wired or wireless hydrogen evolution or CO2 reduction reactions.

9.
Inorg Chem ; 61(10): 4442-4452, 2022 Mar 14.
Article in English | MEDLINE | ID: mdl-35239342

ABSTRACT

We report the phase evolution and thermoelectric properties of a series of Co(Ge0.5Te0.5)3-xSbx (x = 0-0.20) compositions synthesized by mechanical alloying. Pristine ternary Co(Ge0.5Te0.5)3 skutterudite crystallizes in the rhombohedral symmetry (R3̅), and Sb doping induces a structural transition to the cubic phase (ideal skutterudite, Im3̅). The Sb substitution increases the carrier concentration while maintaining a high thermopower even at higher doping levels owing to an increased effective mass. The exceptional electronic properties exhibited by Co(Ge0.5Te0.5)3 upon doping are attributed to the carrier transport from both the primary and secondary conduction bands, as shown by theoretical calculations. The enhanced electrical conductivity and high thermopower increase the power factor by more than 20 times. Because the dominant phonon propagation modes in binary skutterudites are associated with the vibrations of pnictogen rings, twisting the latter through the isoelectronic replacement of Sb4 rings with Ge2Te2 ones, as done in this study, can effectively reduce the thermal conductivity. This leads to an increase in the dimensionless figure-of-merit (zT) by a factor of 30, reaching 0.65 at 723 K for Co(Ge0.5Te0.5)2.9Sb0.1.

11.
ACS Omega ; 7(11): 9152-9163, 2022 Mar 22.
Article in English | MEDLINE | ID: mdl-35356688

ABSTRACT

The widespread use of energy storage technologies has created a high demand for the development of novel anode materials in Li-ion batteries (LIBs) with high areal capacity and faster electron-transfer kinetics. In this work, carbon-coated Cu2ZnSnS4 with a hierarchical 3D structure (CZTS@C) is used as an anode material for LIBs. The CZTS@C microstructures with enhanced electrical conductivity and improved Li-ion diffusivity exhibit high areal and gravimetric capacities of 2.45 mA h/cm2 and 1366 mA h/g, respectively. The areal capacity achieved in the present study is higher than that of previously reported CZTS-based materials. Moreover, in situ X-ray diffraction results show that lithium ions are stored in CZTS through the insertion reaction, followed by the alloying and conversion reactions at ∼1 V. The structural evolution of Li2S and Cu-Sn/Cu-Zn alloy phases occurs during the conversion and alloying reactions. The present work provides a cost-effective and simple method to prepare bulk CZTS and highlights the conformal carbon coating over CZTS, which can enhance the electrical and ionic conductivities of CZTS materials and increase the mass loading (1-2.3 mg/cm2). The improved stability and rate capability of CZTS@C anode materials can therefore be achieved.

12.
Small ; 18(2): e2105076, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34799991

ABSTRACT

Effects of electronic and atomic structures of V-doped 2D layered SnS2 are studied using X-ray spectroscopy for the development of photocatalytic/photovoltaic applications. Extended X-ray absorption fine structure measurements at V K-edge reveal the presence of VO and VS bonds which form the intercalation of tetrahedral OVS sites in the van der Waals (vdW) gap of SnS2 layers. X-ray absorption near-edge structure (XANES) reveals not only valence state of V dopant in SnS2 is ≈4+ but also the charge transfer (CT) from V to ligands, supported by V Lα,ß resonant inelastic X-ray scattering. These results suggest V doping produces extra interlayer covalent interactions and additional conducting channels, which increase the electronic conductivity and CT. This gives rapid transport of photo-excited electrons and effective carrier separation in layered SnS2 . Additionally, valence-band photoemission spectra and S K-edge XANES indicate that the density of states near/at valence-band maximum is shifted to lower binding energy in V-doped SnS2 compare to pristine SnS2 and exhibits band gap shrinkage. These findings support first-principles density functional theory calculations of the interstitially tetrahedral OVS site intercalated in the vdW gap, highlighting the CT from V to ligands in V-doped SnS2 .

13.
Materials (Basel) ; 16(1)2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36614436

ABSTRACT

GaN nanowires (NWs) grown on silicon via atmospheric pressure chemical vapor deposition were doped with Cobalt (Co) by ion implantation, with a high dose concentration of 4 × 1016 cm-2, corresponding to an average atomic percentage of ~3.85%, and annealed after the implantation. Co-doped GaN showed optimum structural properties when annealed at 700 °C for 6 min in NH3 ambience. From scanning electron microscopy, X-ray diffraction, high resolution transmission electron microscope, and energy dispersive X-ray spectroscopy measurements and analyses, the single crystalline nature of Co-GaN NWs was identified. Slight expansion in the lattice constant of Co-GaN NWs due to the implantation-induced stress effect was observed, which was recovered by thermal annealing. Co-GaN NWs exhibited ferromagnetism as per the superconducting quantum interference device (SQUID) measurement. Hysteretic curves with Hc (coercivity) of 502.5 Oe at 5 K and 201.3 Oe at 300 K were obtained. Applied with a magnetic field of 100 Oe, the transition point between paramagnetic property and ferromagnetic property was determined at 332 K. Interesting structural and conducive magnetic properties show the potential of Co-doped GaN nanowires for the next optoelectronic, electronic, spintronic, sensing, optical, and related applications.

14.
Small ; 17(46): e2103823, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34665522

ABSTRACT

A heterobimetallic corrole complex, comprising oxygen reduction reaction (ORR) active non-precious metals Co and Fe with a corrole-N4 center (PhFCC), is successfully synthesized and used to prepare a dual-atom molecular catalyst (DAMC) through subsequent low-temperature pyrolysis. This low-temperature pyrolyzed electrocatalyst exhibited impressive ORR performance, with onset potentials of 0.86 and 0.94 V, and half-wave potentials of 0.75 and 0.85 V, under acidic and basic conditions, respectively. During potential cycling, this DAMC displayed half-wave potential losses of only 25 and 5 mV under acidic and alkaline conditions after 3000 cycles, respectively, demonstrating its excellent stability. Single-cell Nafion-based proton exchange membrane fuel cell performance using this DAMC as the cathode catalyst showed a maximum power density of 225 mW cm-2 , almost close to that of most metal-N4 macrocycle-based catalysts. The present study showed that preservation of the defined CoN4 structure along with the cocatalytic Fe-Cx site synergistically acted as a dual ORR active center to boost overall ORR performance. The development of DAMC from a heterobimetallic CoN4-macrocyclic system using low-temperature pyrolysis is also advantageous for practical applications.

15.
Chemosphere ; 282: 130971, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34107423

ABSTRACT

Pharmaceutical drugs' removal from wastewater by photocatalytic oxidation process is considered as an attractive approach and environmentally friendly solution. This report aims to appraise the practical application potential of Ag/g-C3N4/ZnO nanorods toward the wastewater treatment of the pharmaceutical industry. The catalysts are synthesized by straightforward and environmentally-friendly strategies. Specifically, g-C3N4/ZnO nanorods heterostructure is constructed by a simple self-assembly method, and then Ag nanoparticles are decorated on g-C3N4/ZnO nanorods by a photoreduction route. The results show that three commercial drugs (paracetamol, amoxicillin, and cefalexin) with high concentration (40 mg L-1) are significantly degraded in the existence of a small dosage of Ag/g-C3N4/ZnO nanorods (0.08 g L-1). The Ag/g-C3N4/ZnO nanorods photocatalyst exhibits degradation performance of paracetamol higher 3.8, 1.8, 1.3 times than pristine g-C3N4, ZnO nanorods, and g-C3N4/ZnO nanorods. Furthermore, Ag/g-C3N4/ZnO nanorods have an excellent reusability and a chemical stability that achieved paracetamol degradation efficiency of 78% and remained chemical structure of the photocatalyst after five cycles. In addition, the photocatalytic mechanism explanation and comparison of photocatalytic drugs' degradation ability have also been discussed in this study.


Subject(s)
Metal Nanoparticles , Pharmaceutical Preparations , Water Purification , Zinc Oxide , Silver
16.
J Chem Phys ; 154(16): 164707, 2021 Apr 28.
Article in English | MEDLINE | ID: mdl-33940797

ABSTRACT

This work demonstrates the first example of interfacial manipulation in a hybrid photocatalyst based on poly(3-hexylthiophene-2,5-diyl) (P3HT) nanoparticle and graphene oxide (GO) bulk heterojunctions to efficiently reduce CO2 into selective industrial hydrocarbons under gas-phase reaction and visible-light illumination. High selectivity of chemical products (methanol and acetaldehyde) was observed. Moreover, the hybrid photocatalyst's solar-to-fuel conversion efficiency was 13.5 times higher than that of pure GO. The increased production yield stems from the co-catalytic and sensitizing role of P3HT in the hybrid system due to its ability to extend light absorption to the visible range and improve interfacial charge transfer to GO. The hybrid P3HT-GO formed a type II heterojunction, and its static and dynamic exciton behaviors were examined using fluorescence spectroscopy and exciton lifetime mapping. A reduced fluorescence decay time was observed by interfacial manipulation for improved dispersion, indicating a more efficient charge transfer from the excited P3HT to GO. Thus, the conducting polymer nanoparticles, 2D nanocarbon, have demonstrated superior performance as a metal-free, non-toxic, low-cost, and scalable heterogeneous photocatalyst for CO2 reduction to solar fuel, a solid-gas system.

17.
Nat Commun ; 12(1): 1321, 2021 Feb 26.
Article in English | MEDLINE | ID: mdl-33637747

ABSTRACT

Layered MoS2 is considered as one of the most promising two-dimensional photocatalytic materials for hydrogen evolution and water splitting; however, the electronic structure at the MoS2-liquid interface is so far insufficiently resolved. Measuring and understanding the band offset at the surfaces of MoS2 are crucial for understanding catalytic reactions and to achieve further improvements in performance. Herein, the heterogeneous charge transfer behavior of MoS2 flakes of various layer numbers and sizes is addressed with high spatial resolution in organic solutions using the ferrocene/ferrocenium (Fc/Fc+) redox pair as a probe in near-field scanning electrochemical microscopy, i.e. in close nm probe-sample proximity. Redox mapping reveals an area and layer dependent reactivity for MoS2 with a detailed insight into the local processes as band offset and confinement of the faradaic current obtained. In combination with additional characterization methods, we deduce a band alignment occurring at the liquid-solid interface.

18.
Nanoscale ; 12(46): 23301-23332, 2020 Dec 08.
Article in English | MEDLINE | ID: mdl-33107552

ABSTRACT

Recent advances in nanotechnology, especially the development of integrated nanostructured materials, have offered unprecedented opportunities for photocatalytic CO2 reduction. Compared to bulk semiconductor photocatalysts, most of these nanostructured photocatalysts offer at least one advantage in areas such as photogenerated carrier kinetics, light absorption, and active surface area, supporting improved photochemical reaction efficiencies. In this review, we briefly cover the cutting-edge research activities in the area of integrated nanostructured catalysts for photochemical CO2 reduction, including aqueous and gas-phase reactions. Primarily explored are the basic principles of tailor-made nanostructured composite photocatalysts and how nanostructuring influences photochemical performance. Specifically, we summarize the recent developments related to integrated nanostructured materials for photocatalytic CO2 reduction, mainly in the following five categories: carbon-based nano-architectures, metal-organic frameworks, covalent-organic frameworks, conjugated porous polymers, and layered double hydroxide-based inorganic hybrids. Besides the technical aspects of nanostructure-enhanced catalytic performance in photochemical CO2 reduction, some future research trends and promising strategies are addressed.

19.
Nat Commun ; 11(1): 4233, 2020 08 25.
Article in English | MEDLINE | ID: mdl-32843614

ABSTRACT

Nonnoble metal catalysts are low-cost alternatives to Pt for the oxygen reduction reactions (ORRs), which have been studied for various applications in electrocatalytic systems. Among them, transition metal complexes, characterized by a redox-active single-metal-atom with biomimetic ligands, such as pyrolyzed cobalt-nitrogen-carbon (Co-Nx/C), have attracted considerable attention. Therefore, we reported the ORR mechanism of pyrolyzed Vitamin B12 using operando X-ray absorption spectroscopy coupled with electrochemical impedance spectroscopy, which enables operando monitoring of the oxygen binding site on the metal center. Our results revealed the preferential adsorption of oxygen at the Co2+ center, with end-on coordination forming a Co2+-oxo species. Furthermore, the charge transfer mechanism between the catalyst and reactant enables further Co-O species formation. These experimental findings, corroborated with first-principle calculations, provide insight into metal active-site geometry and structural evolution during ORR, which could be used for developing material design strategies for high-performance electrocatalysts for fuel cell applications.

20.
Nat Commun ; 11(1): 3682, 2020 Jul 23.
Article in English | MEDLINE | ID: mdl-32703950

ABSTRACT

Most chemical vapor deposition methods for transition metal dichalcogenides use an extremely small amount of precursor to render large single-crystal flakes, which usually causes low coverage of the materials on the substrate. In this study, a self-capping vapor-liquid-solid reaction is proposed to fabricate large-grain, continuous MoS2 films. An intermediate liquid phase-Na2Mo2O7 is formed through a eutectic reaction of MoO3 and NaF, followed by being sulfurized into MoS2. The as-formed MoS2 seeds function as a capping layer that reduces the nucleation density and promotes lateral growth. By tuning the driving force of the reaction, large mono/bilayer (1.1 mm/200 µm) flakes or full-coverage films (with a record-high average grain size of 450 µm) can be grown on centimeter-scale substrates. The field-effect transistors fabricated from the full-coverage films show high mobility (33 and 49 cm2 V-1 s-1 for the mono and bilayer regions) and on/off ratio (1 ~ 5 × 108) across a 1.5 cm × 1.5 cm region.

SELECTION OF CITATIONS
SEARCH DETAIL
...