Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
2.
Eur J Pharmacol ; 968: 176368, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38316246

ABSTRACT

Spinal cord injury (SCI) is a traumatic neuropathic condition that results in motor, sensory and autonomic dysfunction. Mitochondrial dysfunction caused by primary trauma is one of the critical pathogenic mechanisms. Moderate levels of zinc have antioxidant effects, promote neurogenesis and immune responses. Zinc normalises mitochondrial morphology in neurons after SCI. However, how zinc protects mitochondria within neurons is unknown. In the study, we used transwell culture, Western blot, Quantitative Real-time Polymerase Chain Reaction (QRT-PCR), ATP content detection, reactive oxygen species (ROS) activity assay, flow cytometry and immunostaining to investigate the relationship between zinc-treated microglia and injured neurons through animal and cell experiments. We found that zinc promotes mitochondrial transfer from microglia to neurons after SCI through Sirtuin 3 (SIRT3) regulation of Mitofusin 2 protein (Mfn2). It can rescue mitochondria in damaged neurons and inhibit oxidative stress, increase ATP levels and promote neuronal survival. Therefore, it can improve the recovery of motor function in SCI mice. In conclusion, our work reveals a potential mechanism to describe the communication between microglia and neurons after SCI, which may provide a new idea for future therapeutic approaches to SCI.


Subject(s)
Sirtuin 3 , Spinal Cord Injuries , Mice , Animals , Spinal Cord/metabolism , Sirtuin 3/metabolism , Zinc/metabolism , Spinal Cord Injuries/metabolism , Mitochondria/metabolism , Adenosine Triphosphate/metabolism , GTP Phosphohydrolases/metabolism
3.
Front Plant Sci ; 14: 1233813, 2023.
Article in English | MEDLINE | ID: mdl-37767289

ABSTRACT

Sweet sorghum has emerged as a promising source of bioenergy mainly due to its high biomass and high soluble sugar yield in stems. Studies have shown that loss-of-function Dry locus alleles have been selected during sweet sorghum domestication, and decapitation can further boost sugar accumulation in sweet sorghum, indicating that the potential for improving sugar yields is yet to be fully realized. To maximize sugar accumulation, it is essential to gain a better understanding of the mechanism underlying the massive accumulation of soluble sugars in sweet sorghum stems in addition to the Dry locus. We performed a transcriptomic analysis upon decapitation of near-isogenic lines for mutant (d, juicy stems, and green leaf midrib) and functional (D, dry stems and white leaf midrib) alleles at the Dry locus. Our analysis revealed that decapitation suppressed photosynthesis in leaves, but accelerated starch metabolic processes in stems. SbbHLH093 negatively correlates with sugar levels supported by genotypes (DD vs. dd), treatments (control vs. decapitation), and developmental stages post anthesis (3d vs.10d). D locus gene SbNAC074A and other programmed cell death-related genes were downregulated by decapitation, while sugar transporter-encoding gene SbSWEET1A was induced. Both SbSWEET1A and Invertase 5 were detected in phloem companion cells by RNA in situ assay. Loss of the SbbHLH093 homolog, AtbHLH093, in Arabidopsis led to a sugar accumulation increase. This study provides new insights into sugar accumulation enhancement in bioenergy crops, which can be potentially achieved by reducing reproductive sink strength and enhancing phloem unloading.

4.
PLoS One ; 18(6): e0286297, 2023.
Article in English | MEDLINE | ID: mdl-37352211

ABSTRACT

IMPORTANCE: SARS-CoV-2 infection can result in ongoing, relapsing, or new symptoms or other health effects after the acute phase of infection; termed post-acute sequelae of SARS-CoV-2 infection (PASC), or long COVID. The characteristics, prevalence, trajectory and mechanisms of PASC are ill-defined. The objectives of the Researching COVID to Enhance Recovery (RECOVER) Multi-site Observational Study of PASC in Adults (RECOVER-Adult) are to: (1) characterize PASC prevalence; (2) characterize the symptoms, organ dysfunction, natural history, and distinct phenotypes of PASC; (3) identify demographic, social and clinical risk factors for PASC onset and recovery; and (4) define the biological mechanisms underlying PASC pathogenesis. METHODS: RECOVER-Adult is a combined prospective/retrospective cohort currently planned to enroll 14,880 adults aged ≥18 years. Eligible participants either must meet WHO criteria for suspected, probable, or confirmed infection; or must have evidence of no prior infection. Recruitment occurs at 86 sites in 33 U.S. states, Washington, DC and Puerto Rico, via facility- and community-based outreach. Participants complete quarterly questionnaires about symptoms, social determinants, vaccination status, and interim SARS-CoV-2 infections. In addition, participants contribute biospecimens and undergo physical and laboratory examinations at approximately 0, 90 and 180 days from infection or negative test date, and yearly thereafter. Some participants undergo additional testing based on specific criteria or random sampling. Patient representatives provide input on all study processes. The primary study outcome is onset of PASC, measured by signs and symptoms. A paradigm for identifying PASC cases will be defined and updated using supervised and unsupervised learning approaches with cross-validation. Logistic regression and proportional hazards regression will be conducted to investigate associations between risk factors, onset, and resolution of PASC symptoms. DISCUSSION: RECOVER-Adult is the first national, prospective, longitudinal cohort of PASC among US adults. Results of this study are intended to inform public health, spur clinical trials, and expand treatment options. REGISTRATION: NCT05172024.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , Observational Studies as Topic , Post-Acute COVID-19 Syndrome , Prospective Studies , Retrospective Studies , SARS-CoV-2 , Adolescent , Adult , Multicenter Studies as Topic
5.
Front Plant Sci ; 14: 1010348, 2023.
Article in English | MEDLINE | ID: mdl-36824200

ABSTRACT

The root-knot nematode Meloidogyne incognita is a pathogenic pest that causes severe economic loss to agricultural production by forming a parasitic relationship with its hosts. During the development of M. incognita in the host plant roots, giant cells are formed as a nutrient sink. However, the roles of sugar transporters during the giant cells gain sugar from the plant cells are needed to improve. Meanwhile, the eventual function of sugars will eventually be exported transporters (SWEETs) in nematode-plant interactions remains unclear. In this study, the expression patterns of Arabidopsis thaliana SWEETs were examined by inoculation with M. incognita at 3 days post inoculation (dpi) (penetration stage) and 18 dpi (developing stage). We found that few AtSWEETs responded sensitively to M. incognita inoculation, with the highest induction of AtSWEET1 (AT1G21460), a glucose transporter gene. Histological analyses indicated that the ß-glucuronidase (GUS) and green fluorescent protein (GFP) signals were observed specifically in the galls of AtSWEET1-GUS and AtSWEET1-GFP transgenic plant roots, suggesting that AtSWEET1 was induced specifically in the galls. Genetic studies have shown that parasitism of M. incognita was significantly affected in atsweet1 compared to wild-type and complementation plants. In addition, parasitism of M. incognita was significantly affected in atsweet10 but not in atsweet13 and atsweet14, expression of which was induced by inoculation with M. incognita. Taken together, these data prove that SWEETs play important roles in plant and nematode interactions.

6.
Proc Natl Acad Sci U S A ; 119(42): e2207558119, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36215460

ABSTRACT

SWEET sucrose transporters play important roles in the allocation of sucrose in plants. Some SWEETs were shown to also mediate transport of the plant growth regulator gibberellin (GA). The close physiological relationship between sucrose and GA raised the questions of whether there is a functional connection and whether one or both of the substrates are physiologically relevant. To dissect these two activities, molecular dynamics were used to map the binding sites of sucrose and GA in the pore of SWEET13 and predicted binding interactions that might be selective for sucrose or GA. Transport assays confirmed these predictions. In transport assays, the N76Q mutant had 7x higher relative GA3 activity, and the S142N mutant only transported sucrose. The impaired pollen viability and germination in sweet13;14 double mutants were complemented by the sucrose-selective SWEET13S142N, but not by the SWEET13N76Q mutant, indicating that sucrose is the physiologically relevant substrate and that GA transport capacity is dispensable in the context of male fertility. Therefore, GA supplementation to counter male sterility may act indirectly via stimulating sucrose supply in male sterile mutants. These findings are also relevant in the context of the role of SWEETs in pathogen susceptibility.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Fertility/genetics , Gene Expression Regulation, Plant , Gibberellins/metabolism , Monosaccharide Transport Proteins , Plant Growth Regulators/metabolism , Sucrose/metabolism
7.
Int J Mol Sci ; 23(18)2022 Sep 06.
Article in English | MEDLINE | ID: mdl-36142167

ABSTRACT

A few recent reviews have addressed progress and perspectives in the field of sugar transport in plants rather comprehensively [...].


Subject(s)
Plants , Sugars , Biological Transport
8.
New Phytol ; 236(2): 525-537, 2022 10.
Article in English | MEDLINE | ID: mdl-35811428

ABSTRACT

Both sugar and the hormone gibberellin (GA) are essential for anther-enclosed pollen development and thus for plant productivity in flowering plants. Arabidopsis (Arabidopsis thaliana) AtSWEET13 and AtSWEET14, which are expressed in anthers and associated with seed yield, transport both sucrose and GA. However, it is still unclear which substrate transported by them directly affects anther development and seed yield. Histochemical staining, cross-sectioning and microscopy imaging techniques were used to investigate and interpret the phenotypes of the atsweet13;14 double mutant during anther development. Genetic complementation of atsweet13;14 using AtSWEET9, which transports sucrose but not GA, and the GA transporter AtNPF3.1, respectively, was conducted to test the substrate preference relevant to the biological process. The loss of both AtSWEET13 and AtSWEET14 resulted in reduced pollen viability and therefore decreased pollen germination. AtSWEET9 fully rescued the defects in pollen viability and germination of atsweet13;14, whereas AtNPF3.1 failed to do so, indicating that AtSWEET13/14-mediated sucrose rather than GA is essential for pollen fertility. AtSWEET13 and AtSWEET14 function mainly at the anther wall during late anther development stages, and they probably are responsible for sucrose efflux into locules to support pollen development to maturation, which is vital for subsequent pollen viability and germination.


Subject(s)
Arabidopsis , Gibberellins , Arabidopsis/genetics , Flowers , Gene Expression Regulation, Plant , Hormones , Pollen/genetics , Sucrose
9.
Front Plant Sci ; 13: 836665, 2022.
Article in English | MEDLINE | ID: mdl-35665175

ABSTRACT

Pollen germination is an essential process for pollen tube growth, pollination, and therefore seed production in flowering plants, and it requires energy either from remobilization of stored carbon sources, such as lipids and starches, or from secreted exudates from the stigma. Transcriptome analysis from in vitro pollen germination previously showed that 14 GO terms, including metabolism and energy, were overrepresented in Arabidopsis. However, little is understood about global changes in carbohydrate and energy-related metabolites during the transition from mature pollen grain to hydrated pollen, a prerequisite to pollen germination, in most plants, including Arabidopsis. In this study, we investigated differential metabolic pathway enrichment among mature, hydrated, and germinated pollen using an untargeted metabolomic approach. Integration of publicly available transcriptome data with metabolomic data generated as a part of this study revealed starch and sucrose metabolism increased significantly during pollen hydration and germination. We analyzed in detail alterations in central metabolism, focusing on soluble carbohydrates, non-esterified fatty acids, glycerophospholipids, and glycerolipids. We found that several metabolites, including palmitic acid, oleic acid, linolenic acid, quercetin, luteolin/kaempferol, and γ-aminobutyric acid (GABA), were elevated in hydrated pollen, suggesting a potential role in activating pollen tube emergence. The metabolite levels of mature, hydrated, and germinated pollen, presented in this work provide insights on the molecular basis of pollen germination.

10.
Sci Adv ; 8(26): eabo0902, 2022 07.
Article in English | MEDLINE | ID: mdl-35767607

ABSTRACT

DNA aptamers have been widely used as biosensors for detecting a variety of targets. Despite decades of success, they have not been applied to monitor any targets in plants, even though plants are a major platform for providing oxygen, food, and sustainable products ranging from energy fuels to chemicals, and high-value products such as pharmaceuticals. A major barrier to progress is a lack of efficient methods to deliver DNA into plant cells. We herein report a thiol-mediated uptake method that more efficiently delivers DNA into Arabidopsis and tobacco leaf cells than another state-of-the-art method, DNA nanostructures. Such a method allowed efficient delivery of a glucose DNA aptamer sensor into Arabidopsis for sensing glucose. This demonstration opens a new avenue to apply DNA aptamer sensors for functional studies of various targets, including metabolites, plant hormones, metal ions, and proteins in plants for a better understanding of the biodistribution and regulation of these species and their functions.


Subject(s)
Aptamers, Nucleotide , Arabidopsis , Biosensing Techniques , Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , DNA/chemistry , Glucose , Plant Cells , Sulfhydryl Compounds , Tissue Distribution
11.
Nat Plants ; 8(2): 102-103, 2022 02.
Article in English | MEDLINE | ID: mdl-35194204

Subject(s)
Sugars
12.
Plant Physiol ; 189(1): 388-401, 2022 05 03.
Article in English | MEDLINE | ID: mdl-35188197

ABSTRACT

Galactose is an abundant and essential sugar used for the biosynthesis of many macromolecules in different organisms, including plants. Galactose metabolism is tightly and finely controlled, since excess galactose and its derivatives are inhibitory to plant growth. In Arabidopsis (Arabidopsis thaliana), root growth and pollen germination are strongly inhibited by excess galactose. However, the mechanism of galactose-induced inhibition during pollen germination remains obscure. In this study, we characterized a plasma membrane-localized transporter, Arabidopsis Sugars Will Eventually be Exported Transporter 5, that transports glucose and galactose. SWEET5 protein levels started to accumulate at the tricellular stage of pollen development and peaked in mature pollen, before rapidly declining after pollen germinated. SWEET5 levels are responsible for the dosage-dependent sensitivity to galactose, and galactokinase is essential for these inhibitory effects during pollen germination. However, sugar measurement results indicate that galactose flux dynamics and sugar metabolism, rather than the steady-state galactose level, may explain phenotypic differences between sweet5 and Col-0 in galactose inhibition of pollen germination.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Galactokinase/metabolism , Galactokinase/pharmacology , Galactose/metabolism , Galactose/pharmacology , Germination , Membrane Transport Proteins/metabolism , Monosaccharide Transport Proteins/genetics , Monosaccharide Transport Proteins/metabolism , Pollen
13.
Gerontologist ; 62(4): e224-e234, 2022 04 20.
Article in English | MEDLINE | ID: mdl-34043004

ABSTRACT

BACKGROUND AND OBJECTIVES: Abilities and activities that are often simultaneously valued may not be simultaneously achievable for older adults with multicomplexity. Because of this, the Geriatrics 5Ms framework prioritizes care on "what matters most." This study aimed to evaluate and refine the What Matters Most-Structured Tool (WMM-ST). RESEARCH DESIGN AND METHODS: About 105 older adults with an average of 4 chronic conditions completed the WMM-ST along with open-ended questions from the Serious Illness Conversation Guide. Participants also provided demographic and social information, completed cognitive screening with the Telephone-Montreal Cognitive Assessment-Short and frailty screening with the Frail scale. Quantitative and qualitative analyses aimed to (a) describe values; (b) evaluate the association of patient characteristics with values; and (c) assess validity via the tool's acceptability, educational bias, and content accuracy. RESULTS: Older adults varied in what matters most. Ratings demonstrated modest associations with social support, religiosity, cognition, and frailty, but not with age or education. The WMM-ST was rated as understandable (86%) and applicable to their current situation (61%) independent of education. Qualitative analyses supported the content validity of WMM-ST, while revealing additional content. DISCUSSION AND IMPLICATIONS: It is possible to assess what matters most to older adults with multicomplexity using a structured tool. Such tools may be useful in making an abstract process clearer but require further validation in diverse samples.


Subject(s)
Frailty , Geriatrics , Aged , Frail Elderly , Frailty/diagnosis , Geriatric Assessment , Geriatrics/education , Humans , Mental Status and Dementia Tests
14.
Curr Drug Deliv ; 19(6): 721-729, 2022.
Article in English | MEDLINE | ID: mdl-34325634

ABSTRACT

PURPOSE: Traditional dosage forms of granisetron (GRN) decrease patient compliance associated with repeated drug administration because of the short half-life of the drug. METHODS: In this study, novel GRN-loaded Polylactic-co-glycolic Acid (PLGA) sustained-release microspheres were prepared for the first time via a dropping-in-liquid emulsification technique. The effects of various factors, such as pH of the outer phase, Tween 80, Polyvinyl Alcohol (PVA) concentrations, and hardening process, on the Encapsulation Efficiency (EE), Drug Loading (DL), and particle size of microspheres were extensively studied. The physicochemical properties, including drug release, surface morphology, crystallinity, thermal changes, and molecular interactions, were also studied. RESULTS: GRN has a pH-dependent solubility and it exhibits a remarkably high solubility under acidic condition. The EE of the alkaline medium (pH 8) was higher than that of the acidic medium (pH 4.0). EE and DL decreased in the presence of Tween 80 in the outer phase, whereas EE significantly increased during hardening. The particle size of microspheres was not affected by PVA and Tween 80 concentrations, but it was influenced by PVA volume and hardening. X-ray diffraction and differential scanning calorimetry results showed that the physical state of the drug changed from a crystalline form to an amorphous form, thereby confirming that the drug was encapsulated into the PLGA matrix. Fourier transform-infrared spectroscopy confirmed that some molecular interactions occurred between the drug and the polymer. GRN-loaded PLGA microspheres showed sustained release profiles of over 90% on week 3. CONCLUSION: GRN-loaded PLGA microspheres with sustained-release were successfully prepared, and they exhibited a relatively high EE without Tween 80 as an emulsifier and with the hardening process.


Subject(s)
Lactic Acid , Polyglycolic Acid , Delayed-Action Preparations/chemistry , Glycolates , Glycols , Humans , Lactic Acid/chemistry , Microspheres , Particle Size , Polyglycolic Acid/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer , Polysorbates
15.
Annu Rev Plant Biol ; 73: 379-403, 2022 05 20.
Article in English | MEDLINE | ID: mdl-34910586

ABSTRACT

Sugar translocation between cells and between subcellular compartments in plants requires either plasmodesmata or a diverse array of sugar transporters. Interactions between plants and associated microorganisms also depend on sugar transporters. The sugars will eventually be exported transporter (SWEET) family is made up of conserved and essential transporters involved in many critical biological processes. The functional significance and small size of these proteins have motivated crystallographers to successfully capture several structures of SWEETs and their bacterial homologs in different conformations. These studies together with molecular dynamics simulations have provided unprecedented insights into sugar transport mechanisms in general and into substrate recognition of glucose and sucrose in particular. This review summarizes our current understanding of the SWEET family, from the atomic to the whole-plant level. We cover methods used for their characterization, theories about their evolutionary origins, biochemical properties, physiological functions, and regulation. We also include perspectives on the future work needed to translate basic research into higher crop yields.


Subject(s)
Gene Expression Regulation, Plant , Plant Proteins , Adolescent , Biological Transport , Child , Humans , Plant Proteins/metabolism , Plants/metabolism , Polysorbates/metabolism , Sugars/metabolism
16.
Cancer Manag Res ; 13: 9007-9013, 2021.
Article in English | MEDLINE | ID: mdl-34908876

ABSTRACT

BACKGROUND: Due to the poor healing of superficial malignant tumor ulcer wounds, patients suffer great pain and significantly reduced quality of life. Related research shows that oxygen therapy can reduce wound bleeding and promote wound healing. OBJECTIVE: This study aims to explore the therapeutic effect of nano-silver antibacterial dressing combined with high-flow oxygen therapy on surface malignant tumor ulcers. METHODS: In this retrospective analysis, 64 patients with superficial malignant tumors and ulcer infection were included and divided into the research group and the control group, with 32 cases in each group. After conventional debridement, the control group was treated with vaseline dressing, while the research group was treated with nano-silver medical antibacterial dressing combined with high-flow oxygen therapy. Both groups were treated for 7 days. The frequency of dressing change and the number of times of blood oozing between the two groups after treatment were recorded. The pain, clinical efficacy, and levels of procalcitonin (PCT) and C-reactive protein (CRP) were compared between the two groups before and after treatment. RESULTS: The dressing changes and blood oozing were less frequent in the research group compared with the control group. The pain score and the levels of PCT and CRP in the research group were lower than those in the control group. The overall response rate was significantly higher in the research group as compared to the control group. All the above differences were statistically significant (P<0.05). CONCLUSION: Nano-silver medical antibacterial dressing combined with high-flow oxygen therapy can reduce the frequency of dressing changes in patients, relieve pain, reduce inflammation, and accelerate the healing of superficial malignant tumor ulcer wounds.

17.
J Nanobiotechnology ; 19(1): 453, 2021 Dec 28.
Article in English | MEDLINE | ID: mdl-34963449

ABSTRACT

BACKGROUND: The interactions between nanoparticles (NPs) and plasma proteins form a protein corona around NPs after entering the biological environment, which provides new biological properties to NPs and mediates their interactions with cells and biological barriers. Given the inevitable interactions, we regard nanoparticle‒protein interactions as a tool for designing protein corona-mediated drug delivery systems. Herein, we demonstrate the successful application of protein corona-mediated brain-targeted nanomicelles in the treatment of glioma, loading them with paclitaxel (PTX), and decorating them with amyloid ß-protein (Aß)-CN peptide (PTX/Aß-CN-PMs). Aß-CN peptide, like the Aß1-42 peptide, specifically binds to the lipid-binding domain of apolipoprotein E (ApoE) in vivo to form the ApoE-enriched protein corona surrounding Aß-CN-PMs (ApoE/PTX/Aß-CN-PMs). The receptor-binding domain of the ApoE then combines with low-density lipoprotein receptor (LDLr) and LDLr-related protein 1 receptor (LRP1r) expressed in the blood-brain barrier and glioma, effectively mediating brain-targeted delivery. METHODS: PTX/Aß-CN-PMs were prepared using a film hydration method with sonication, which was simple and feasible. The specific formation of the ApoE-enriched protein corona around nanoparticles was characterized by Western blotting analysis and LC-MS/MS. The in vitro physicochemical properties and in vivo anti-glioma effects of PTX/Aß-CN-PMs were also well studied. RESULTS: The average size and zeta potential of PTX/Aß-CN-PMs and ApoE/PTX/Aß-CN-PMs were 103.1 nm, 172.3 nm, 7.23 mV, and 0.715 mV, respectively. PTX was efficiently loaded into PTX/Aß-CN-PMs, and the PTX release from rhApoE/PTX/Aß-CN-PMs exhibited a sustained-release pattern in vitro. The formation of the ApoE-enriched protein corona significantly improved the cellular uptake of Aß-CN-PMs on C6 cells and human umbilical vein endothelial cells (HUVECs) and enhanced permeability to the blood-brain tumor barrier in vitro. Meanwhile, PTX/Aß-CN-PMs with ApoE-enriched protein corona had a greater ability to inhibit cell proliferation and induce cell apoptosis than taxol. Importantly, PTX/Aß-CN-PMs exhibited better anti-glioma effects and tissue distribution profile with rapid accumulation in glioma tissues in vivo and prolonged median survival of glioma-bearing mice compared to those associated with PMs without the ApoE protein corona. CONCLUSIONS: The designed PTX/Aß-CN-PMs exhibited significantly enhanced anti-glioma efficacy. Importantly, this study provided a strategy for the rational design of a protein corona-based brain-targeted drug delivery system. More crucially, we utilized the unfavorable side of the protein corona and converted it into an advantage to achieve brain-targeted drug delivery.


Subject(s)
Antineoplastic Agents/administration & dosage , Apolipoproteins E/administration & dosage , Brain/drug effects , Glioma/drug therapy , Nanoparticles/administration & dosage , Protein Corona , Amyloid beta-Peptides/administration & dosage , Amyloid beta-Peptides/chemistry , Amyloid beta-Peptides/pharmacokinetics , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Apolipoproteins E/chemistry , Apolipoproteins E/pharmacokinetics , Blood-Brain Barrier/metabolism , Brain/metabolism , Cell Line , Cell Survival/drug effects , Drug Delivery Systems , Glioma/metabolism , Humans , Mice , Micelles , Nanoparticles/chemistry , Paclitaxel/administration & dosage , Paclitaxel/chemistry , Paclitaxel/pharmacokinetics , Peptide Fragments/administration & dosage , Peptide Fragments/chemistry , Peptide Fragments/pharmacokinetics , Polyesters/administration & dosage , Polyesters/chemistry , Polyesters/pharmacokinetics , Polyethylene Glycols/administration & dosage , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacokinetics , Protein Corona/chemistry
18.
Brain Behav ; 11(12): e2431, 2021 12.
Article in English | MEDLINE | ID: mdl-34808033

ABSTRACT

INTRODUCTION: Several studies have investigated the efficacy of human urinary kallidinogenase (HUK) combined with edaravone (Eda) in acute ischemic stroke (AIS) patients. Our aim was to provide the best available evidence for clinical practice and further research programs for stroke treatment. METHODS: We searched the online database for paper published between January 2015 and April 2021. We calculated weighted mean difference (WMD) or odds risk (OR) and their corresponding 95% confidence interval (95% CI) of reported outcomes between HUK plus Eda and Eda groups for each study. The random-effect models or fixed-effect models were used to pool the analysis. RESULTS: Thirteen studies with 1242 patients were included. In the pooled analysis, the scores of NIHSS in the HUK plus Eda group were significantly lower than that in patients receiving Eda (WMD = -3.92, 95% CI (-4.82, -3.02), p < .0001). The ADL scores in the HUK plus Eda group were significantly greater than that in patients receiving Eda (WMD = 14.13, 95% CI (10.67, 17.60), p < .0001). Furthermore, HUK plus Eda was associated with a higher rate of total efficacy (OR = 3.97, 95% CI (2.81, 5.59), p < .0001). CONCLUSIONS: HUK combined with Eda provides potential clinical benefits as a treatment for AIS. Further high-quality, large-scale randomized trials are needed to confirm these results.


Subject(s)
Brain Ischemia , Ischemic Stroke , Stroke , Brain Ischemia/complications , Brain Ischemia/drug therapy , Edaravone/pharmacology , Edaravone/therapeutic use , Humans , Stroke/complications , Stroke/drug therapy , Tissue Kallikreins/therapeutic use , Treatment Outcome
19.
Int J Nanomedicine ; 16: 5755-5776, 2021.
Article in English | MEDLINE | ID: mdl-34471351

ABSTRACT

BACKGROUND: Glioma is the most common primary malignant brain tumor with a dreadful overall survival and high mortality. One of the most difficult challenges in clinical treatment is that most drugs hardly pass through the blood-brain barrier (BBB) and achieve efficient accumulation at tumor sites. Thus, to circumvent this hurdle, developing an effectively traversing BBB drug delivery nanovehicle is of significant clinical importance. Rabies virus glycoprotein (RVG) is a derivative peptide that can specifically bind to nicotinic acetylcholine receptor (nAChR) widely overexpressed on BBB and glioma cells for the invasion of rabies virus into the brain. Inspired by this, RVG has been demonstrated to potentiate drugs across the BBB, promote the permeability, and further enhance drug tumor-specific selectivity and penetration. METHODS: Here, we used the RVG15, rescreened from the well-known RVG29, to develop a brain-targeted liposome (RVG15-Lipo) for enhanced BBB permeability and tumor-specific delivery of paclitaxel (PTX). The paclitaxel-cholesterol complex (PTX-CHO) was prepared and then actively loaded into liposomes to acquire high entrapment efficiency (EE) and fine stability. Meanwhile, physicochemical properties, in vitro and in vivo delivery efficiency and therapeutic effect were investigated thoroughly. RESULTS: The particle size and zeta potential of PTX-CHO-RVG15-Lipo were 128.15 ± 1.63 nm and -15.55 ± 0.78 mV, respectively. Compared with free PTX, PTX-CHO-RVG15-Lipo exhibited excellent targeting efficiency and safety in HBMEC and C6 cells, and better transport efficiency across the BBB in vitro model. Furthermore, PTX-CHO-RVG15-Lipo could noticeably improve the accumulation of PTX in the brain, and then promote the chemotherapeutic drugs penetration in C6luc orthotopic glioma based on in vivo imaging assays. The in vivo antitumor results indicated that PTX-CHO-RVG15-Lipo significantly inhibited glioma growth and metabasis, therefore improved survival rate of tumor-bearing mice with little adverse effect. CONCLUSION: Our study demonstrated that the RVG15 was a promising brain-targeted specific ligands owing to the superior BBB penetration and tumor targeting ability. Based on the outstanding therapeutic effect both in vitro and in vivo, PTX-CHO-RVG15-Lipo was proved to be a potential delivery system for PTX to treat glioma in clinic.


Subject(s)
Brain Neoplasms , Glioma , Animals , Blood-Brain Barrier , Brain , Brain Neoplasms/drug therapy , Cell Line, Tumor , Cholesterol , Drug Delivery Systems , Glioma/drug therapy , Liposomes/therapeutic use , Mice , Paclitaxel/therapeutic use
20.
J Integr Plant Biol ; 63(12): 2075-2092, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34473403

ABSTRACT

Translational control of gene expression, including recruitment of ribosomes to messenger RNA (mRNA), is particularly important during the response to stress. Purification of ribosome-associated mRNAs using translating ribosome affinity purification (TRAP) followed by RNA-sequencing facilitates the study of mRNAs undergoing active transcription and better proxies the translatome, or protein response, to stimuli. To identify plant responses to Magnesium (Mg) deficiency at the translational level, we combined transcriptome and translatome analyses. Excitingly, we found 26 previously unreported Mg-responsive genes that were only regulated at the translational level and not the transcriptional level, during the early response to Mg deficiency. In addition, mutants of the transcription factor ELONGATED HYPOCOTYL 5 (HY5), the H+ /CATION EXCHANGER 1 and 3 (CAX1 and CAX3), and UBIQUITIN 11 (UBQ11) exhibited early chlorosis phenotype under Mg deficiency, supporting their functional involvement in ion homeostasis. Overall, our study strongly supports that TRAP-seq combined with RNA-seq followed by phenotype screening could facilitate the identification of novel players during stress responses.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Magnesium Deficiency , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Magnesium Deficiency/metabolism , Protein Biosynthesis , Ribosomes/genetics , Ribosomes/metabolism , Transcriptome/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...