Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 158(13): 134711, 2023 Apr 07.
Article in English | MEDLINE | ID: mdl-37031159

ABSTRACT

As an important phase-change material, GeTe has many high-pressure phases as well, but its phase transitions under pressure are still lack of clarity. It is challenging to identify high-pressure GeTe crystal structures owing to the phase coexistence in a wide pressure range and the reversibility of phase transitions. Hence, first-principles calculations are required to provide further information in addition to limited experimental characterizations. In this work, a new orthorhombic Cmca GeTe high-pressure phase has been predicted via the CALYPSO method as the most energetically favorable phase in the pressure range between ∼30 and ∼38.5 GPa, which would update the GeTe high-pressure phase transition sequence. The crystal structure of the Cmca phase is composed of alternate stacking puckered layers of Ge six-membered rings and Te four-membered rings along the b direction. The high density of states near the Fermi level and delocalization of electrons from the two-dimensional electron localization function indicate a strong metallic property of the Cmca phase. Electron-phonon coupling calculations indicate that the Cmca phase is superconductive below ∼4.2 K at 35 GPa. The simulated x-ray diffraction pattern of the Cmca phase implies that this phase might coexist with the Pnma-boat phase under high pressure. These results offer further understanding on the high-pressure structural evolution and physical properties in GeTe and other IV-VI semiconductors.

2.
Nature ; 592(7856): 708-711, 2021 04.
Article in English | MEDLINE | ID: mdl-33911270

ABSTRACT

Molecular quantum gases (that is, ultracold and dense molecular gases) have many potential applications, including quantum control of chemical reactions, precision measurements, quantum simulation and quantum information processing1-3. For molecules, to reach the quantum regime usually requires efficient cooling at high densities, which is frequently hindered by fast inelastic collisions that heat and deplete the population of molecules4,5. Here we report the preparation of two-dimensional Bose-Einstein condensates (BECs) of spinning molecules by inducing pairing interactions in an atomic condensate near a g-wave Feshbach resonance6. The trap geometry and the low temperature of the molecules help to reduce inelastic loss, ensuring thermal equilibrium. From the equation-of-state measurement, we determine the molecular scattering length to be + 220(±30) Bohr radii (95% confidence interval). We also investigate the unpairing dynamics in the strong coupling regime and find that near the Feshbach resonance the dynamical timescale is consistent with the unitarity limit. Our work demonstrates the long-sought transition between atomic and molecular condensates, the bosonic analogue of the crossover from a BEC to a Bardeen-Cooper-Schrieffer (BCS) superfluid in a Fermi gas7-9. In addition, our experiment may shed light on condensed pairs with orbital angular momentum, where a novel anisotropic superfluid with non-zero surface current is predicted10,11, such as the A phase of 3He.

3.
Sci Rep ; 10(1): 5870, 2020 Apr 03.
Article in English | MEDLINE | ID: mdl-32246123

ABSTRACT

We report an experimental demonstration of generation and measurement of sub-wavelength phase structure of a Bose-Einstein condensate (BEC) with two-dimensional optical lattice. This is implemented by applying a short lattice pulse on BEC in the Kapitza-Dirac (or Raman-Nath) regime, which, in the classical picture, corresponds to phase modulation imprinted on matter wave. When the phase modulation is larger than 2π in a lattice cell, the periodicity of phase naturally forms the sub-wavelength phase structure. By converting the phase information into amplitude, we are able to measure the sub-wavelength structure through the momentum distribution of BEC via the time-of-flight absorption image. Beyond the classical treatment, we further demonstrate the importance of quantum fluctuations in the formation of sub-wavelength phase structure by considering different lattice configurations. Our scheme provides a powerful tool for exploring the fine structure of a lattice cell as well as topological defects in matter wave.

4.
ACS Appl Mater Interfaces ; 12(7): 8271-8279, 2020 Feb 19.
Article in English | MEDLINE | ID: mdl-31990526

ABSTRACT

Cu3SbS4-based materials composed of nontoxic, low-cost, and earth-abundant elements potentially exhibit favorable thermoelectric performance. However, some key transport parameters and thermal stability have not been reported. In this work, the effects of Bi and Sn co-doping on thermoelectric properties and the thermal stability of Cu3SbS4 were studied by experiment and theoretical validation. Bi and Sn doping can effectively tune the electrical properties and the electronic band structure. The Bi and Sn doping leads to an increased carrier concentration from 6.4 × 1017 to 7.4 × 1020 cm-3 and a decreased optical band gap from 0.85 to 0.73 eV. The effective mass was increased from ∼3.0 me for Bi-doped samples to ∼4.0 me for Bi and Sn co-doped samples. An enhanced power factor of 1398 µW m-1 K-2 at 623 K was obtained for Cu3Sb1-x-yBixSnyS4 (x = 0.06, y = 0.09). The measurements of elastic properties exhibited a large Grüneisen parameter (γ ∼2) for Cu3SbS4-based materials. Finally, a maximum zT of 0.76 ± 0.02 at 623 K was achieved for Cu3Sb1-x-yBixSnyS4 (x = 0.06, y = 0.05) sample. In addition, Cu3SbS4 materials possess excellent thermal stability after thermal treatment in vacuum at 573 K for totally 500 h and dozens of heating-cooling thermal cycles (300-623-300 K). It indicates that Cu3SbS4 is a robust alternative for Te-free thermoelectric materials at an intermediate temperature range. This work provides feasible guidance to survey the thermal stability of chalcogenides.

5.
RSC Adv ; 9(55): 32205-32209, 2019 Oct 07.
Article in English | MEDLINE | ID: mdl-35530798

ABSTRACT

In this work, we presented the influence of catalyst geometric construction on temperature distribution, flow structure, the transport processes of the carbon atoms, and the resulting diamond growth in the process of HPHT diamond synthesis. Several catalyst geometry models were tested, and the experimental results of growth rates were compared with numerical simulations. We revealed that increasing the protrusion diameter of the convex-shaped catalysts could significantly improve the growth rate of diamonds. The diamond growth rate was improved from 1.6 mg h-1 to 4 mg h-1 when the protrusion diameter was enlarged by 2 mm. These results will be discussed through the characteristic distributions of the temperature and convection fields in the process of diamond growth.

6.
Phys Rev Lett ; 120(19): 193601, 2018 May 11.
Article in English | MEDLINE | ID: mdl-29799222

ABSTRACT

We measure the superradiant emission in a one-dimensional (1D) superradiance lattice (SL) in ultracold atoms. Resonantly excited to a superradiant state, the atoms are further coupled to other collectively excited states, which form a 1D SL. The directional emission of one of the superradiant excited states in the 1D SL is measured. The emission spectra depend on the band structure, which can be controlled by the frequency and intensity of the coupling laser fields. This work provides a platform for investigating the collective Lamb shift of resonantly excited superradiant states in Bose-Einstein condensates and paves the way for realizing higher dimensional superradiance lattices.

7.
Phys Rev Lett ; 117(23): 235304, 2016 Dec 02.
Article in English | MEDLINE | ID: mdl-27982638

ABSTRACT

The recent experimental realization of synthetic spin-orbit coupling (SOC) opens a new avenue for exploring novel quantum states with ultracold atoms. However, in experiments for generating two-dimensional SOC (e.g., Rashba type), a perpendicular Zeeman field, which opens a band gap at the Dirac point and induces many topological phenomena, is still lacking. Here, we theoretically propose and experimentally realize a simple scheme for generating two-dimensional SOC and a perpendicular Zeeman field simultaneously in ultracold Fermi gases by tuning the polarization of three Raman lasers that couple three hyperfine ground states of atoms. The resulting band gap opening at the Dirac point is probed using spin injection radio-frequency spectroscopy. Our observation may pave the way for exploring topological transport and topological superfluids with exotic Majorana and Weyl fermion excitations in ultracold atoms.

SELECTION OF CITATIONS
SEARCH DETAIL
...