Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Anal Chem ; 95(42): 15522-15530, 2023 10 24.
Article in English | MEDLINE | ID: mdl-37812586

ABSTRACT

Digital PCR combined with high resolution melt (HRM) is an emerging method for identifying pathogenic bacteria with single cell resolution via species-specific digital melt curves. Currently, the development of such digital PCR-HRM assays entails first identifying PCR primers to target hypervariable gene regions within the target bacteria panel, next performing bulk-based PCR-HRM to examine whether the resulting species-specific melt curves possess sufficient interspecies variability (i.e., variability between bacterial species), and then digitizing the bulk-based PCR-HRM assays with melt curves that have high interspecies variability via microfluidics. In this work, we first report our discovery that the current development workflow can be inadequate because a bulk-based PCR-HRM assay that produces melt curves with high interspecies variability can, in fact, lead to a digital PCR-HRM assay that produces digital melt curves with unwanted intraspecies variability (i.e., variability within the same bacterial species), consequently hampering bacteria identification accuracy. Our subsequent investigation reveals that such intraspecies variability in digital melt curves can arise from PCR primers that target nonidentical gene copies or amplify nonspecifically. We then show that computational in silico HRM opens a window to inspect both interspecies and intraspecies variabilities and thus provides the missing link between bulk-based PCR-HRM and digital PCR-HRM. Through this new development workflow, we report a new digital PCR-HRM assay with improved bacteria identification accuracy. More broadly, this work can serve as the foundation for enhancing the development of future digital PCR-HRM assays toward identifying causative pathogens and combating infectious diseases.


Subject(s)
Bacteria , Bacteria/genetics , Polymerase Chain Reaction/methods , Transition Temperature
2.
Anal Chem ; 95(2): 1159-1168, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36562405

ABSTRACT

Point-of-care (POC) HIV viral load (VL) tests are needed to enhance access to HIV VL testing in low- and middle-income countries (LMICs) and to enable HIV VL self-testing at home, which in turn have the potential to enhance the global management of the disease. While methods based on real-time reverse transcription-polymerase chain reaction (RT-PCR) are highly sensitive and quantitatively accurate, they often require bulky and expensive instruments, making applications at the POC challenging. On the other hand, although methods based on isothermal amplification techniques could be performed using low-cost instruments, they have shown limited quantitative accuracies, i.e., being only semiquantitative. Herein, we present a sensitive and quantitative POC HIV VL quantification method from blood that can be performed using a small power-free three-dimensional-printed plasma separation device and a portable, low-cost magnetofluidic real-time RT-PCR instrument. The plasma separation device, which is composed of a plasma separation membrane and an absorbent material, demonstrated 96% plasma separation efficiency per 100 µL of whole blood. The plasma solution was then processed in a magnetofluidic cartridge for automated HIV RNA extraction and quantification using the portable instrument, which completed 50 cycles of PCR in 15 min. Using the method, we achieved a limit of detection of 500 HIV RNA copies/mL, which is below the World Health Organization's virological failure threshold, and a good quantitative accuracy. The method has the potential for sensitive and quantitative HIV VL testing at the POC and at home self-testing.


Subject(s)
HIV Infections , HIV-1 , Humans , Point-of-Care Systems , Viral Load/methods , RNA, Viral/analysis , HIV-1/genetics , Real-Time Polymerase Chain Reaction/methods , Sensitivity and Specificity
3.
Anal Chem ; 94(36): 12481-12489, 2022 09 13.
Article in English | MEDLINE | ID: mdl-36040305

ABSTRACT

Many protein biomarkers are present in biofluids at a very low level but may play critical roles in important biological processes. The fact that these low-abundance proteins remain largely unexplored underscores the importance of developing new tools for highly sensitive protein detection. Although digital enzyme-linked immunosorbent assay (ELISA) has demonstrated ultrahigh sensitivity compared with conventional ELISA, the requirement of specialized instruments limits the accessibility and prevents the widespread implementation. On the other hand, proximity ligation assays (PLA) and proximity extension assays (PEA) show sensitive and specific protein detection using regular laboratory setups, but their sensitivity needs to be further improved to match digital ELISA. To achieve highly sensitive protein detection with minimal accessibility limitation, we develop a magnetic bead-based PEA (magPEA), which posts triple epitope recognition requirement and enables extensive washing for improved sensitivity and enhanced specificity. We demonstrate that the incorporation of magnetic beads into PEA workflow facilitates orders of magnitude sensitivity improvement compared with conventional ELISA, homogeneous PEA, and solid-phase PLA and achieves limits of detection close to that of digital ELISA when using IL-6, IL-8, and GM-CSF as validation. Our magPEA provides a simple approach for highly sensitive protein detection that can be readily implemented to other laboratories and will thus ultimately accelerate the study of the low abundance protein biomarkers in the future.


Subject(s)
Biological Assay , Blood Proteins , Biomarkers , Enzyme-Linked Immunosorbent Assay , Magnetic Phenomena
4.
Anal Chem ; 94(26): 9372-9379, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35730588

ABSTRACT

Polymerase chain reaction (PCR)-based diagnostic testing is the gold standard method for pathogen identification (ID) with recent developments enabling automated PCR tests for point-of-care (POC) use. However, multiplexed identification of several pathogens in PCR assays typically requires optics for an equivalent number of fluorescence channels, increasing instrumentation's complexity and cost. In this study, we first developed ratiometric PCR that surpassed one target per color barrier to allow multiplexed identification while minimizing optical components for affordable POC use. We realized it by amplifying pathogenic targets with fluorescently labeled hydrolysis probes with a specific ratio of red-to-green fluorophores for each bacterial species. We then coupled ratiometric PCR and automated magnetic beads-based sample preparation within a thermoplastic cartridge and a portable droplet magnetofluidic platform. We named the integrated workflow POC-ratioPCR. We demonstrated that the POC-ratioPCR could detect one out of six bacterial targets related to urinary tract infections (UTIs) in a single reaction using only two-color channels. We further evaluated POC-ratioPCR using mock bacterial urine samples spiked with good agreement. The POC-ratioPCR presents a simple and effective method for enabling broad-based POC PCR identification of pathogens directly from crude biosamples with low optical instrumentation complexity.


Subject(s)
Point-of-Care Systems , Urinary Tract Infections , Bacteria/genetics , Humans , Immunomagnetic Separation , Polymerase Chain Reaction , Urinary Tract Infections/diagnosis
5.
Front Bioeng Biotechnol ; 10: 826694, 2022.
Article in English | MEDLINE | ID: mdl-35425764

ABSTRACT

Candida auris is an emerging multidrug-resistant fungal pathogen that can cause severe and deadly infections. To date, C. auris has spurred outbreaks in healthcare settings in thirty-three countries across five continents. To control and potentially prevent its spread, there is an urgent need for point-of-care (POC) diagnostics that can rapidly screen patients, close patient contacts, and surveil environmental sources. Droplet magnetofluidics (DM), which leverages nucleic acid-binding magnetic beads for realizing POC-amenable nucleic acid detection platforms, offers a promising solution. Herein, we report the first DM device-coined POC.auris-for POC detection of C. auris. As part of POC.auris, we have incorporated a handheld cell lysis module that lyses C. auris cells with 2 min hands-on time. Subsequently, within the palm-sized and automated DM device, C. auris and control DNA are magnetically extracted and purified by a motorized magnetic arm and finally amplified via a duplex real-time quantitative PCR assay by a miniaturized rapid PCR module and a miniaturized fluorescence detector-all in ≤30 min. For demonstration, we use POC.auris to detect C. auris isolates from 3 major clades, with no cross reactivity against other Candida species and a limit of detection of ∼300 colony forming units per mL. Taken together, POC.auris presents a potentially useful tool for combating C. auris.

6.
Adv Mater Technol ; 7(6): 2101013, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35441089

ABSTRACT

The rise of highly transmissible SARS-CoV-2 variants brings new challenges and concerns with vaccine efficacy, diagnostic sensitivity, and public health responses to end the pandemic. Widespread detection of variants is critical to inform policy decisions to mitigate further spread, and postpandemic multiplexed screening of respiratory viruses will be necessary to properly manage patients presenting with similar respiratory symptoms. In this work, a portable, magnetofluidic cartridge platform for automated polymerase chain reaction testing in <30 min is developed. Cartridges are designed for multiplexed detection of SARS-CoV-2 with either identification of variant mutations or screening for Influenza A and B. Moreover, the platform can perform identification of B.1.1.7 and B.1.351 variants and the multiplexed SARS-CoV-2/Influenza assay using archived clinical nasopharyngeal swab eluates and saliva samples. This work illustrates a path toward affordable and immediate testing with potential to aid surveillance of viral variants and inform patient treatment.

7.
Lab Chip ; 22(5): 945-953, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35088790

ABSTRACT

The ability to detect and quantify HIV RNA in blood is essential to sensitive detection of infections and monitoring viremia throughout treatment. Current options for point-of-care HIV diagnosis (i.e. lateral flow rapid tests) lack sensitivity for early detection and are unable to quantify viral load. HIV RNA diagnostics typically require extensive pre-processing of blood to isolate plasma and extract nucleic acids, in addition to expensive equipment for conducting nucleic acid amplification and fluorescence detection. Therefore, molecular HIV diagnostics is still mainly limited to clinical laboratories and there is an unmet need for high sensitivity point-of-care screening and at-home HIV viral load quantification. In this work, we outline a streamlined workflow for extraction of plasma from whole blood coupled with HIV RNA extraction and quantitative polymerase chain reaction (qPCR) in a portable magnetofluidic cartridge platform for use at the point-of-care. Viral particles were isolated from blood using manual filtration through a 3D-printed filter module in seconds followed by automated nucleic acid capture, purification, and transfer to qPCR using magnetic beads. Both nucleic acid extraction and qPCR were integrated within cartridges using compact instrumentation consisting of a motorized magnet arm, miniaturized thermocycler, and image-based fluorescence detection. We demonstrated detection down to 1000 copies of HIV viral particles from whole blood in <30 minutes.


Subject(s)
HIV Infections , Nucleic Acid Amplification Techniques , HIV Infections/diagnosis , Humans , Point-of-Care Systems , RNA , RNA, Viral , Viral Load
8.
Biosens Bioelectron ; 195: 113656, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34600203

ABSTRACT

Serological tests play an important role in the fight against Coronavirus Disease 2019 (COVID-19), including monitoring the dynamic immune response after vaccination, identifying past infection and determining community infection rate. Conventional methods for serological testing, such as enzyme-linked immunosorbent assays and chemiluminescence immunoassays, provide reliable and sensitive antibody detection but require sophisticated laboratory infrastructure and/or lengthy assay time. Conversely, lateral flow immunoassays are suitable for rapid point-of-care tests but have limited sensitivity. Here, we describe the development of a rapid and sensitive magnetofluidic immuno-PCR platform that can address the current gap in point-of-care serological testing for COVID-19. Our magnetofluidic immuno-PCR platform automates a magnetic bead-based, single-binding, and one-wash immuno-PCR assay in a palm-sized magnetofluidic device and delivers results in ∼30 min. In the device, a programmable magnetic arm attracts and transports magnetically-captured antibodies through assay reagents pre-loaded in a companion plastic cartridge, and a miniaturized thermocycler and a fluorescence detector perform immuno-PCR to detect the antibodies. We evaluated our magnetofluidic immuno-PCR with 108 clinical serum/plasma samples and achieved 93.8% (45/48) sensitivity and 98.3% (59/60) specificity, demonstrating its potential as a rapid and sensitive point-of-care serological test for COVID-19.


Subject(s)
Biosensing Techniques , COVID-19 , Antibodies, Viral , COVID-19 Serological Testing , COVID-19 Testing , Humans , Point-of-Care Systems , Point-of-Care Testing , SARS-CoV-2 , Sensitivity and Specificity
9.
Lab Chip ; 21(23): 4716-4724, 2021 11 25.
Article in English | MEDLINE | ID: mdl-34779472

ABSTRACT

There remains an unmet need for a simple microfluidic platform that can perform multi-step and multi-reagent biochemical assays in parallel for high-throughput detection and analysis of single molecules and single cells. In response, we report herein a PDMS-based vacuum-driven microfluidic array that is capable of multi-step sample loading and digitalization. The array features multi-level bifurcation microchannels connecting to 4096 dead-end microchambers for partitioning liquid reagents/samples. To realize multi-step repetitive liquid sample loading, we attach an external vacuum onto the chip to create internal negative pressure for a continuous liquid driving force. We demonstrated a high uniformity of our device for three sequential liquid loadings. To further improve its utility, we developed a thermosetting-oil covering method to prevent evaporation for assays that require high temperatures. We successfully performed digital PCR assays on our device, demonstrating the efficient multi-step reagent handling and the effective anti-evaporation design for thermal cycling. Furthermore, we performed a digital PCR detection for single-cell methicillin-resistant Staphylococcus aureus using a three-step loading approach and achieved accurate single-cell quantification. Taken together, we have demonstrated that our vacuum-driven microfluidic array is capable of multi-step sample digitalization at high throughput for single-molecule and single-cell analyses.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Microfluidics , Methicillin-Resistant Staphylococcus aureus/genetics , Polymerase Chain Reaction , Single-Cell Analysis , Vacuum
10.
Anal Chem ; 93(31): 10940-10946, 2021 08 10.
Article in English | MEDLINE | ID: mdl-34319068

ABSTRACT

With a nearly 100% mortality rate, African swine fever (ASF) has devastated the pork industry in many countries. Without a vaccine in sight, mitigation rests on rapid diagnosis and immediately depopulating infected or exposed animals. Unfortunately, current tests require centralized laboratories with well-trained personnel, take days to report the results, and thus do not meet the need for such rapid diagnosis. In response, we developed a portable, sample-to-answer device that allows for ASF detection at the point of need in <30 min. The device employs droplet magnetofluidics to automate DNA purification from blood, tissue, or swab samples and utilizes fast thermal cycling to perform real-time quantitative polymerase chain reaction (qPCR), all within an inexpensive disposable cartridge. We evaluated its diagnostic performance at six farms and slaughter facilities. The device exhibits high diagnostic accuracy with a positive percent agreement of 92.2% and a negative percent agreement of 93.6% compared with a lab-based reference qPCR test.


Subject(s)
African Swine Fever Virus , African Swine Fever , African Swine Fever/diagnosis , African Swine Fever Virus/genetics , Animals , Real-Time Polymerase Chain Reaction , Swine
11.
Biosens Bioelectron ; 190: 113390, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34171821

ABSTRACT

In the fight against COVID-19, there remains an unmet need for point-of-care (POC) diagnostic testing tools that can rapidly and sensitively detect the causative SARS-CoV-2 virus to control disease transmission and improve patient management. Emerging CRISPR-Cas-assisted SARS-CoV-2 detection assays are viewed as transformative solutions for POC diagnostic testing, but their lack of streamlined sample preparation and full integration within an automated and portable device hamper their potential for POC use. We report herein POC-CRISPR - a single-step CRISPR-Cas-assisted assay that incoporates sample preparation with minimal manual operation via facile magnetic-based nucleic acid concentration and transport. Moreover, POC-CRISPR has been adapted into a compact thermoplastic cartridge within a palm-sized yet fully-integrated and automated device. During analytical evaluation, POC-CRISPR was able detect 1 genome equivalent/µL SARS-CoV-2 RNA from a sample volume of 100 µL in < 30 min. When evaluated with 27 unprocessed clinical nasopharyngeal swab eluates that were pre-typed by standard RT-qPCR (Cq values ranged from 18.3 to 30.2 for the positive samples), POC-CRISPR achieved 27 out of 27 concordance and could detect positive samples with high SARS-CoV-2 loads (Cq < 25) in 20 min.


Subject(s)
Biosensing Techniques , COVID-19 , CRISPR-Cas Systems/genetics , Clustered Regularly Interspaced Short Palindromic Repeats , Humans , Point-of-Care Systems , RNA, Viral , SARS-CoV-2 , Sensitivity and Specificity
12.
Sci Transl Med ; 13(593)2021 05 12.
Article in English | MEDLINE | ID: mdl-33980576

ABSTRACT

Effective treatment of sexually transmitted infections (STIs) is limited by diagnostics that cannot deliver results rapidly while the patient is still in the clinic. The gold standard methods for identification of STIs are nucleic acid amplification tests (NAATs), which are too expensive for widespread use and have lengthy turnaround times. To address the need for fast and affordable diagnostics, we have developed a portable, rapid, on-cartridge magnetofluidic purification and testing (PROMPT) polymerase chain reaction (PCR) test. We show that it can detect Neisseria gonorrhoeae, the pathogen causing gonorrhea, with simultaneous genotyping of the pathogen for resistance to the antimicrobial drug ciprofloxacin in <15 min. The duplex test was integrated into a low-cost thermoplastic cartridge with automated processing of penile swab samples from patients using magnetic beads. A compact instrument conducted DNA extraction, PCR, and analysis of results while relaying data to the user via a smartphone app. This platform was tested on penile swab samples from sexual health clinics in Baltimore, MD, USA (n = 66) and Kampala, Uganda (n = 151) with an overall sensitivity and specificity of 97.7% (95% CI, 94.7 to 100%) and 97.6% (95% CI, 94.1 to 100%), respectively, for N. gonorrhoeae detection and 100% concordance with culture results for ciprofloxacin resistance. This study paves the way for delivering accessible PCR diagnostics for rapidly detecting STIs at the point of care, helping to guide treatment decisions and combat the rise of antimicrobial resistant pathogens.


Subject(s)
Gonorrhea , Sexually Transmitted Diseases , Baltimore , Gonorrhea/diagnosis , Gonorrhea/drug therapy , Humans , Neisseria gonorrhoeae/genetics , Sensitivity and Specificity , Sexually Transmitted Diseases/diagnosis , Sexually Transmitted Diseases/drug therapy , Uganda
13.
medRxiv ; 2021 May 11.
Article in English | MEDLINE | ID: mdl-34013284

ABSTRACT

The rise of highly transmissible SARS-CoV-2 variants brings new challenges and concerns with vaccine efficacy, diagnostic sensitivity, and public health responses in the fight to end the pandemic. Widespread detection of variant strains will be critical to inform policy decisions to mitigate further spread, and post-pandemic multiplexed screening of respiratory viruses will be necessary to properly manage patients presenting with similar respiratory symptoms. In this work, we have developed a portable, magnetofluidic cartridge platform for automated PCR testing in <30 min. Cartridges were designed for multiplexed detection of SARS-CoV-2 with either distinctive variant mutations or with Influenza A and B. The platform demonstrated a limit of detection down to 2 copies/µL SARS-CoV-2 RNA with successful identification of B.1.1.7 and B.1.351 variants. The multiplexed SARS-CoV-2/Flu assay was validated using archived clinical nasopharyngeal swab eluates ( n = 116) with an overall sensitivity/specificity of 98.1%/95.2%, 85.7%/100%, 100%/98.2%, respectively, for SARS-CoV-2, Influenza A, and Influenza B. Further testing with saliva ( n = 14) demonstrated successful detection of all SARS-CoV-2 positive samples with no false-positives.

14.
Adv Sci (Weinh) ; 8(5): 2003564, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33717855

ABSTRACT

The unprecedented demand for rapid diagnostics in response to the COVID-19 pandemic has brought the spotlight onto clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated systems (Cas)-assisted nucleic acid detection assays. Already benefitting from an elegant detection mechanism, fast assay time, and low reaction temperature, these assays can be further advanced via integration with powerful, digital-based detection. Thus motivated, the first digital CRISPR/Cas-assisted assay-coined digitization-enhanced CRISPR/Cas-assisted one-pot virus detection (deCOViD)-is developed and applied toward SARS-CoV-2 detection. deCOViD is realized through tuning and discretizing a one-step, fluorescence-based, CRISPR/Cas12a-assisted reverse transcription recombinase polymerase amplification assay into sub-nanoliter reaction wells within commercially available microfluidic digital chips. The uniformly elevated digital concentrations enable deCOViD to achieve qualitative detection in <15 min and quantitative detection in 30 min with high signal-to-background ratio, broad dynamic range, and high sensitivity-down to 1 genome equivalent (GE) µL-1 of SARS-CoV-2 RNA and 20 GE µL-1 of heat-inactivated SARS-CoV-2, which outstrips its benchtop-based counterpart and represents one of the fastest and most sensitive CRISPR/Cas-assisted SARS-CoV-2 detection to date. Moreover, deCOViD can detect RNA extracts from clinical samples. Taken together, deCOViD opens a new avenue for advancing CRISPR/Cas-assisted assays and combating the COVID-19 pandemic and beyond.

15.
Nat Commun ; 12(1): 652, 2021 01 28.
Article in English | MEDLINE | ID: mdl-33510160

ABSTRACT

Injury and loss of oligodendrocytes can cause demyelinating diseases such as multiple sclerosis. To improve our understanding of human oligodendrocyte development, which could facilitate development of remyelination-based treatment strategies, here we describe time-course single-cell-transcriptomic analysis of developing human stem cell-derived oligodendrocyte-lineage-cells (hOLLCs). The study includes hOLLCs derived from both genome engineered embryonic stem cell (ESC) reporter cells containing an Identification-and-Purification tag driven by the endogenous PDGFRα promoter and from unmodified induced pluripotent (iPS) cells. Our analysis uncovers substantial transcriptional heterogeneity of PDGFRα-lineage hOLLCs. We discover sub-populations of human oligodendrocyte progenitor cells (hOPCs) including a potential cytokine-responsive hOPC subset, and identify candidate regulatory genes/networks that define the identity of these sub-populations. Pseudotime trajectory analysis defines developmental pathways of oligodendrocytes vs astrocytes from PDGFRα-expressing hOPCs and predicts differentially expressed genes between the two lineages. In addition, pathway enrichment analysis followed by pharmacological intervention of these pathways confirm that mTOR and cholesterol biosynthesis signaling pathways are involved in maturation of oligodendrocytes from hOPCs.


Subject(s)
Genetic Heterogeneity , Genetic Variation , Induced Pluripotent Stem Cells/metabolism , Oligodendrocyte Precursor Cells/metabolism , Single-Cell Analysis/methods , Transcriptome/genetics , Astrocytes/cytology , Astrocytes/metabolism , Cell Differentiation/genetics , Cell Line , Cell Lineage/genetics , Cholesterol/biosynthesis , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Gene Regulatory Networks/genetics , Humans , Induced Pluripotent Stem Cells/cytology , Oligodendrocyte Precursor Cells/cytology , Receptor, Platelet-Derived Growth Factor alpha/genetics , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Signal Transduction/genetics , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism
16.
Anal Chem ; 93(3): 1260-1265, 2021 01 26.
Article in English | MEDLINE | ID: mdl-33372757

ABSTRACT

In the face of the global threat from drug-resistant superbugs, there remains an unmet need for simple and accessible diagnostic tools that can perform important antibiotic susceptibility testing against pathogenic bacteria and guide antibiotic treatments outside of centralized clinical laboratories. As a potential solution to this important problem, we report herein the development of a microwell array-based resazurin-aided colorimetric antibiotic susceptibility test (marcAST). At the core of marcAST is a ready-to-use microwell array device that is preassembled with custom titers of various antibiotics and splits bacterial samples upon a simple syringe injection step to initiate AST against all antibiotics. We also employ resazurin, which changes from blue to pink in the presence of growing bacteria, to accelerate and enable colorimetric readout in our AST. Even with its simplicity, marcAST can accurately measure the minimum inhibitory concentrations of reference bacterial strains against common antibiotics and categorize the antibiotic susceptibilities of clinically isolated bacteria. With more characterization and refinement, we envision that marcAST can become a potentially useful tool for performing AST without trained personnel, laborious procedures, or bulky instruments, thereby decentralizing this important test for combating drug-resistant superbugs.


Subject(s)
Anti-Bacterial Agents/analysis , Colorimetry , Oxazines/chemistry , Xanthenes/chemistry
17.
Biosens Bioelectron ; 167: 112499, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-32846271

ABSTRACT

Digital nucleic acid amplification tests (digital NAATs) have emerged as a popular tool for nucleic acid detection due to their high sensitivity and specificity. Most current digital NAAT platforms, however, are limited to a "one-color-one-target" approach wherein each target is encoded with a specific fluorescently-labeled probe for single-plex fluorometric detection. This approach is difficult to multiplex due to spectral overlap between any additional fluorophores, and multiplexability of digital NAATs has therefore been limited. As a means to scale multiplexability, we have developed a multiplexed digital NAAT platform, termed Droplet Digital Ratiometric Fluorescence Coding (ddRFC), via a padlock probe-based nucleic acid detection assay which encodes each nucleic acid target with a unique combination of 2 fluorophores. We detect this encoded two-color fluorescence signature of each target by performing digital amplification in microfluidic droplets. To demonstrate the utility of our platform, we have synthesized 6 distinct padlock probes, each rendering a unique two-color fluorescence signature to a nucleic acid target representing a clinically important sexually transmitted infection (STI). We proceed to demonstrate broad-based, two-plex, four-plex, and six-plex detection of the STI targets with single-molecule resolution. Our design offers a cost-effective approach to scale up multiplexability by simply tuning the number of molecular beacon binding sites on the padlock probe without redesigning amplification primers or fluorescent molecular beacons. With further development, our platform has the potential to enable highly multiplexed detection of nucleic acid targets, with potentially unrestricted multiplexability, and serve as a diagnostic tool for many more diseases in the future.


Subject(s)
Biosensing Techniques , DNA Primers , Microfluidics , Nucleic Acid Amplification Techniques
18.
Commun Biol ; 3(1): 82, 2020 02 21.
Article in English | MEDLINE | ID: mdl-32081919

ABSTRACT

Photoreceptor loss is a leading cause of blindness, but mechanisms underlying photoreceptor degeneration are not well understood. Treatment strategies would benefit from improved understanding of gene-expression patterns directing photoreceptor development, as many genes are implicated in both development and degeneration. Neural retina leucine zipper (NRL) is critical for rod photoreceptor genesis and degeneration, with NRL mutations known to cause enhanced S-cone syndrome and retinitis pigmentosa. While murine Nrl loss has been characterized, studies of human NRL can identify important insights for human retinal development and disease. We utilized iPSC organoid models of retinal development to molecularly define developmental alterations in a human model of NRL loss. Consistent with the function of NRL in rod fate specification, human retinal organoids lacking NRL develop S-opsin dominant photoreceptor populations. We report generation of two distinct S-opsin expressing populations in NRL null retinal organoids and identify MEF2C as a candidate regulator of cone development.


Subject(s)
Basic-Leucine Zipper Transcription Factors/genetics , Eye Proteins/genetics , Induced Pluripotent Stem Cells/physiology , Organoids/pathology , Retina/pathology , Retinal Cone Photoreceptor Cells/physiology , Basic-Leucine Zipper Transcription Factors/deficiency , Case-Control Studies , Cell Differentiation/genetics , Cells, Cultured , Cellular Reprogramming/physiology , Eye Diseases, Hereditary/genetics , Eye Diseases, Hereditary/pathology , Fetus/pathology , Gene Expression Profiling , Humans , Nerve Regeneration/genetics , Neurogenesis/genetics , Organoids/physiology , Primary Cell Culture/methods , Retina/physiology , Retinal Degeneration/genetics , Retinal Degeneration/pathology , Retinitis Pigmentosa/genetics , Retinitis Pigmentosa/pathology , Transcriptome , Vision Disorders/genetics , Vision Disorders/pathology
19.
Sci Rep ; 10(1): 698, 2020 01 20.
Article in English | MEDLINE | ID: mdl-31959834

ABSTRACT

Prototheca zopfii is an alga increasingly isolated from bovine mastitis. Of the two genotypes of P. zopfii (genotype I and II (GT-I and -II)), P. zopfii GT-II is the genotype associated with acute mastitis and decreased milk production, although its pathogenesis is not well known. The objective was to determine inflammatory and apoptotic roles of P. zopfii GT-II in cultured mammary epithelial cells (from cattle and mice) and murine macrophages and using a murine model of mastitis. Prototheca zopfii GT-II (but not GT-I) invaded bovine and murine mammary epithelial cells (MECs) and induced apoptosis, as determined by the terminal deoxynucleotidyl transferase mediated deoxyuridine triphosphate nick end labeling assay. This P. zopfii GT-II driven apoptosis corresponded to mitochondrial pathways; mitochondrial transmembrane resistance (ΔΨm) was altered and modulation of mitochondrion-mediated apoptosis regulating genes changed (increased transcriptional Bax, cytochrome-c and Apaf-1 and downregulated Bcl-2), whereas caspase-9 and -3 expression increased. Apoptotic effects by P. zopfii GT-II were more pronounced in macrophages compared to MECs. In a murine mammary infection model, P. zopfii GT-II replicated in the mammary gland and caused severe inflammation with infiltration of macrophages and neutrophils and upregulation of pro-inflammatory genes (TNF-α, IL-1ß and Cxcl-1) and also apoptosis of epithelial cells. Thus, we concluded P. zopfii GT-II is a mastitis-causing pathogen that triggers severe inflammation and also mitochondrial apoptosis.


Subject(s)
Epithelial Cells/cytology , Macrophages/cytology , Mastitis, Bovine/microbiology , Mitochondria/metabolism , Prototheca/pathogenicity , Animals , Cattle , Cell Line , Cells, Cultured , Disease Models, Animal , Epithelial Cells/metabolism , Epithelial Cells/microbiology , Female , Genotype , Macrophages/drug effects , Macrophages/metabolism , Mastitis, Bovine/metabolism , Mice , Models, Biological , Prototheca/genetics
20.
Nanoscale ; 11(25): 12388-12396, 2019 Jul 07.
Article in English | MEDLINE | ID: mdl-31215952

ABSTRACT

The precise diagnosis of cancer remains a great challenge; therefore, it is our research interest to develop safe, tumor-specific reagents. In this study, we designed nanovesicles derived from erythrocyte membranes; the nanovesicles are capable of recognizing tumor cells for both circulating tumor cell (CTC) capture and tumor imaging. The tumor-targeting molecules folic acid (FA) and fluorescein Cy5 were modified on the nanovesicle surface. The developed nanovesicles exhibit excellent tumor targeting ability both in vitro and in vivo for CTC capture and in tumor imaging. Compared with traditional immunomagnetic beads, the proposed nanovesicles are capable of avoiding non-specific adsorption as a derivative of red blood cells. Combined with a non-invasive means of micromanipulation, the nanometer-sized vesicles show a high purity of CTC capture (over 90%). In vivo, the nanovesicles can also be employed for efficient tumor imaging without obvious toxicity and side effects. In brief, the nanovesicles prepared herein show potential clinical application for integrated diagnosis in vitro and in vivo.


Subject(s)
Carbocyanines , Erythrocytes , Neoplasms, Experimental , Neoplastic Cells, Circulating/metabolism , Optical Imaging , Animals , Carbocyanines/chemistry , Carbocyanines/pharmacology , Erythrocytes/chemistry , Erythrocytes/metabolism , Female , HCT116 Cells , Humans , MCF-7 Cells , Mice , Mice, Inbred BALB C , Neoplasms, Experimental/diagnostic imaging , Neoplasms, Experimental/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL