Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Food Res Int ; 183: 114180, 2024 May.
Article in English | MEDLINE | ID: mdl-38760124

ABSTRACT

Platostoma palustre (Mesona chinensis Benth or Hsian-tsao, also known as "Xiancao" in China), is an edible and medicinal plant native to India, Myanmar, and Indo-China. It is the main ingredient in the popular desserts Hsian-tsao tea, herbal jelly, and sweet herbal jelly soup. P. palustre is found abundantly in nutrient-rich substances and possesses unique aroma compounds. Variations in the contents of volatile compounds among different germplasms significantly affect the quality and flavor of P. palustre, causing contradiction in demand. This study investigates the variation in the volatile compound profiles of distinct ploidy germplasms of P. palustre by utilising headspace gas chromatography-mass spectrometry (HS-GC-MS) and an electronic nose (e-nose). The results showed significant differences in the aroma characteristics of stem and leaf samples in diverse P. palustre germplasms. A total of sixty-seven volatile compounds have been identified and divided into ten classes. Six volatile compounds (caryophyllene, α-bisabolol, benzaldehyde, ß-selinene, ß-elemene and acetic acid) were screened as potential marker volatile compounds to discriminate stems and leaves of P. palustre. In this study, leaves of P. palustre showed one odor pattern and stems showed two odor patterns under the influence of α-bisabolol, acetic acid, and butyrolactone. In addition, a correlation analysis was conducted on the main volatile compounds identified by HS-GC-MS and e-nose. This analysis provided additional insight into the variations among samples resulting from diverse germplasms. The present study provides a valuable volatilome, and flavor, and quality evaluation for P. palustre, as well as new insights and scientific basis for the development and use of P. palustre germplasm resources.


Subject(s)
Electronic Nose , Gas Chromatography-Mass Spectrometry , Odorants , Volatile Organic Compounds , Volatile Organic Compounds/analysis , Odorants/analysis , Plant Leaves/chemistry , Taste , Plant Stems/chemistry
2.
Physiol Plant ; 175(6): e14055, 2023.
Article in English | MEDLINE | ID: mdl-38148188

ABSTRACT

Patchouli alcohol, a significant bioactive component of the herbal plant Pogostemon cablin, has considerable medicinal and commercial potential. Several genes and transcription factors involved in the biosynthesis pathway of patchouli alcohol have been identified. However, so far, regulatory factors directly interacting with patchouli synthase (PTS) have not been reported. This study was conducted to analyze the interaction between PcENO3 and PcPTS to explore the molecular regulation effect of PcENO3 on patchouli alcohol biosynthesis. PcENO3, a homologous protein of Arabidopsis ENO3 belonging to the enolase family, was identified and characterized. Subcellular localization experiments in Arabidopsis protoplast cells indicated that the PcENO3 protein was localized in both the cytoplasm and nucleus. The physical interaction between PcENO3 and PcPTS was confirmed through yeast two-hybrid (Y2H), GST pull-down, and bimolecular fluorescence complementation assays. Furthermore, the Y2H assay demonstrated that PcENO3 could also interact with JAZ proteins in the JA pathway. Enzymatic assays showed that the interaction with PcENO3 increased the catalytic activity of patchoulol synthase. Additionally, suppression of PcENO3 expression with VIGS (virus-induced gene silencing) decreased patchouli alcohol content compared to the control. These findings suggest that PcENO3 interacts with patchoulol synthase and modulates patchoulol biosynthesis by enhancing the enzymatic activity of PcPTS.


Subject(s)
Arabidopsis , Pogostemon , Sesquiterpenes , Pogostemon/genetics , Pogostemon/metabolism , Arabidopsis/metabolism , Sesquiterpenes/metabolism
3.
Bioact Mater ; 25: 716-731, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37056259

ABSTRACT

Aortic aneurysm and dissection (AAD) are leading causes of death in the elderly. Recent studies have demonstrated that silicate ions can manipulate multiple cells, especially vascular-related cells. We demonstrated in this study that silicate ions as soluble form of bioactive ceramics effectively alleviated aortic aneurysm and dissection in both Ang II and ß-BAPN induced AAD models. Different from the single targeting therapeutic drug approaches, the bioactive ceramic derived approach attributes to the effect of bioactive silicate ions on the inhibition of the AAD progression through regulating the local vascular microenvironment of aorta systematically in a multi-functional way. The in vitro experiments revealed that silicate ions did not only alleviate senescence and inflammation of the mouse aortic endothelial cells, enhance M2 polarization of mouse bone marrow-derived macrophages, and reduce apoptosis of mouse aortic smooth muscle cells, but also regulate their interactions. The in vivo studies further confirm that silicate ions could effectively alleviate senescence, inflammation, and cell apoptosis of aortas, accomplished with reduced aortic dilation, collagen deposition, and elastin laminae degradation. This bioactive ceramic derived therapy provides a potential new treatment strategy in attenuating AAD progression.

4.
Front Plant Sci ; 14: 1098280, 2023.
Article in English | MEDLINE | ID: mdl-36923120

ABSTRACT

Pogostemon cablin is an important aromatic medicinal herb widely used in the pharmaceutical and perfume industries. However, our understanding of the phytochemical compounds and metabolites within P. cablin remains limited. To our knowledge, no integrated studies have hitherto been conducted on the metabolites of the aerial parts of P. cablin. In this study, twenty-three volatile compounds from the aerial parts of P. cablin were identified by GC-MS, predominantly sesquiterpenes. Quantitative analysis showed the highest level of patchouli alcohol in leaves (24.89 mg/g), which was 9.12 and 6.69-fold higher than in stems and flowers. UHPLC-QTOFMS was used to analyze the non-volatile compounds of leaf, stem and flower tissues. The differences in metabolites between flower and leaf tissues were the largest. Based on 112, 77 and 83 differential metabolites between flower-leaf, flower-stem and leaf-stem, three tissue-specific biomarkers of metabolites were identified, and the differential metabolites were enriched in several KEGG pathways. Furthermore, labeling differential metabolites in the primary and secondary metabolic pathways showed that flowers accumulated more lipids and amino acids, including proline, lysine and tryptophan; the leaves accumulated higher levels of terpenoids, vitamins and flavonoids, and stems contained higher levels of carbohydrate compounds. Based on the role of acetyl coenzyme A, the distribution and possible exchange mechanism of metabolites in leaves, stems and flowers of P. cablin were mapped for the first time, laying the groundwork for future research on the metabolites in P. cablin and their regulatory role.

5.
PLoS Comput Biol ; 18(9): e1010472, 2022 09.
Article in English | MEDLINE | ID: mdl-36149894

ABSTRACT

The metagenome embedded in urban sewage is an attractive new data source to understand urban ecology and assess human health status at scales beyond a single host. Analyzing the viral fraction of wastewater in the ongoing COVID-19 pandemic has shown the potential of wastewater as aggregated samples for early detection, prevalence monitoring, and variant identification of human diseases in large populations. However, using census-based population size instead of real-time population estimates can mislead the interpretation of data acquired from sewage, hindering assessment of representativeness, inference of prevalence, or comparisons of taxa across sites. Here, we show that taxon abundance and sub-species diversisty in gut-associated microbiomes are new feature space to utilize for human population estimation. Using a population-scale human gut microbiome sample of over 1,100 people, we found that taxon-abundance distributions of gut-associated multi-person microbiomes exhibited generalizable relationships with respect to human population size. Here and throughout this paper, the human population size is essentially the sample size from the wastewater sample. We present a new algorithm, MicrobiomeCensus, for estimating human population size from sewage samples. MicrobiomeCensus harnesses the inter-individual variability in human gut microbiomes and performs maximum likelihood estimation based on simultaneous deviation of multiple taxa's relative abundances from their population means. MicrobiomeCensus outperformed generic algorithms in data-driven simulation benchmarks and detected population size differences in field data. New theorems are provided to justify our approach. This research provides a mathematical framework for inferring population sizes in real time from sewage samples, paving the way for more accurate ecological and public health studies utilizing the sewage metagenome.


Subject(s)
COVID-19 , Gastrointestinal Microbiome , Gastrointestinal Microbiome/genetics , Humans , Pandemics , Population Density , Sewage , Wastewater
6.
J Nutr Biochem ; 110: 109144, 2022 12.
Article in English | MEDLINE | ID: mdl-36057413

ABSTRACT

Lycopene (LYC) has been regarded as a nutraceutical that has powerful antioxidant and hepatoprotective bioactivities. In the present study, we aimed to investigate the beneficial effects of LYC on hepatic insulin signal transduction under oxidative stress conditions and the possible involvement of FGF21 and mitochondria pathways. Two-month-old CD-1 mice were treated by intraperitoneal injection of D-galactose (D-gal) 150 mg/kg/day for 8 weeks and received 0.03% LYC (w/w, mixed into diet). The results showed that LYC increased the expression of FGF21, alleviated mitochondrial dysfunction and improved hepatic insulin signal transduction in D-gal-treated mice. Furthermore, knockdown of FGF21 by small interfering RNA notably suppressed mitochondrial function and blunted LYC-stimulated insulin signal transduction in H2O2-treated HepG2 cells. Moreover, suppressed mitochondrial function via oligomycin also inhibited insulin signal transduction, indicating that LYC supplementation ameliorated oxidative stress-induced hepatic dysfunction of insulin signal transduction by up-regulating FGF21 and enhancing mitochondrial function.


Subject(s)
Hydrogen Peroxide , Insulin , Animals , Mice , Lycopene/pharmacology , Hydrogen Peroxide/metabolism , Insulin/metabolism , Oxidative Stress , Mitochondria/metabolism , Signal Transduction
7.
Front Plant Sci ; 13: 946629, 2022.
Article in English | MEDLINE | ID: mdl-36092423

ABSTRACT

Farnesyl pyrophosphate synthase (FPPS) plays an important role in the synthesis of plant secondary metabolites, but its function and molecular regulation mechanism remain unclear in Pogostemon cablin. In this study, the full-length cDNA of the FPP synthase gene from P. cablin (PcFPPS) was cloned and characterized. The expressions of PcFPPS are different among different tissues (highly in P. cablin flowers). Subcellular localization analysis in protoplasts indicated that PcFPPS was located in the cytoplasm. PcFPPS functionally complemented the lethal FPPS deletion mutation in yeast CC25. Transient overexpression of PcFPPS in P. cablin leaves accelerated terpene biosynthesis, with an ~47% increase in patchouli alcohol. Heterologous overexpression of PcFPPS in tobacco plants was achieved, and it was found that the FPP enzyme activity was significantly up-regulated in transgenic tobacco by ELISA analysis. In addition, more terpenoid metabolites, including stigmasterol, phytol, and neophytadiene were detected compared with control by GC-MS analysis. Furthermore, with dual-LUC assay and yeast one-hybrid screening, we found 220 bp promoter of PcFPPS can be bound by the nuclear-localized transcription factor PcWRKY44. Overexpression of PcWRKY44 in P. cablin upregulated the expression levels of PcFPPS and patchoulol synthase gene (PcPTS), and then promote the biosynthesis of patchouli alcohol. Taken together, these results strongly suggest the PcFPPS and its binding transcription factor PcWRKY44 play an essential role in regulating the biosynthesis of patchouli alcohol.

8.
J Agric Food Chem ; 70(23): 7188-7201, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35654756

ABSTRACT

The production of patchoulol in the patchouli (Pogostemon cablin) plant determines its application value, as it is the principal active sesquiterpene of essential oil extracted from this plant. Here, the promoter of patchoulol synthase gene (PatPTSpro) was isolated and found to be methyl jasmonate (MeJA)-induced. A nucleus-localized AP2/ERF transcription factor PatDREB was identified as a transcription activator binding to PatPTSpro, regulating patchoulol biosynthesis through modulating the gene expression. PatDREB also interacts with jasmonate ZIM-domain 4 (JAZ4). Furthermore, PatDREB could physically interact with the MYB-related transcription factor PatSWC4 and synergistically facilitate patchoulol biosynthesis. However, the transcriptional activation activity of the PatDREB-PatSWC4 complex could be inhibited by PatJAZ4, and JA could reverse this interference. Overall, we demonstrated the positive roles of PatDREB and the PatDREB-PatSWC4 complex in regulating patchoulol production, which advance our understanding of the regulatory network of patchoulol biosynthesis.


Subject(s)
Sesquiterpenes , Transcription Factors , Cyclopentanes/pharmacology , Gene Expression Regulation, Plant , Isomerases , Oxylipins/pharmacology , Sesquiterpenes/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
9.
Nanoscale ; 14(21): 7837-7848, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35583070

ABSTRACT

Antimicrobial materials have been developed to combat bacteria more effectively and promote infected wound healing. However, it is widely recognized that the potential toxic effects and complexity of the synthesis process hinder their practical applications. In this work, we introduced a strategy for fighting bacteria and promoting wound healing caused by Staphylococcus epidermidis (S. epidermidis) infection by the self-combination of Zn2+ and clinically applied 5-aminolevulinic acid hydrochloride (ALA) in the microbes. The clinical ALA could target and accumulate in the biofilm as well as contribute to the low-dose Zn2+ penetrating the biofilm due to the self-organized formation of Zn protoporphyrin IX in situ. Upon exposing to a 635 nm laser, the self-combination of ALA and Zn2+ significantly inhibited and eliminated the S. epidermidis biofilm via a synergistic biofilm eradication mechanism that enhanced photodynamic inactivation and aggravated cell wall/membrane disruption. In addition, the combination of ALA and Zn2+ could accelerate wound repair and reduce inflammatory response without causing cytotoxicity. The proposed strategy in this study illustrates the clinical prospects of eradicating biofilms and repairing infected wounds and demonstrates good biocompatibility towards infectious diseases.


Subject(s)
Photosensitizing Agents , Wound Infection , Anti-Bacterial Agents/pharmacology , Biofilms , Humans , Ions , Photosensitizing Agents/pharmacology , Staphylococcus epidermidis , Wound Healing , Wound Infection/drug therapy , Wound Infection/microbiology , Zinc/pharmacology
10.
Zhongguo Zhong Yao Za Zhi ; 47(2): 412-418, 2022 Jan.
Article in Chinese | MEDLINE | ID: mdl-35178983

ABSTRACT

Farnesyl diphosphate synthase(FPPS) is a key enzyme at the branch point of the sesquiterpene biosynthetic pathway, but there are no reports on the transcriptional regulation of FPPS promoter in Pogostemon cabin. In the early stage of this study, we obtained the binding protein PcFBA-1 of FPPS gene promoter in P. cabin. In order to explore the possible mechanism of PcFBA-1 involved in the regulation of patchouli alcohol biosynthesis, this study performed PCR-based cloning and sequencing analysis of PcFBA-1, analyzed the expression patterns of PcFBA-1 in different tissues by fluorescence quantitative PCR and its subcellular localization using the protoplast transformation system, detected the binding of PcFBA-1 protein to the FPPS promoter in vitro with the yeast one-hybrid system, and verified its transcriptional regulatory function by dual-luciferase reporter gene assay. The findings demonstrated that the cloned PcFBA-1 had an open reading frame(ORF) of 1 131 bp, encoding a protein of 376 amino acids, containing two conserved domains named F-box-like superfamily and FBA-1 superfamily, and belonging to the F-box family. Moreover, neither signal peptide nor transmembrane domain was contained, implying that it was an unstable hydrophilic protein. In addition, as revealed by fluorescence quantitative PCR results, PcFBA-1 had the highest expression in leaves, and there was no significant difference in expression in roots or stems. PcFBA-1 protein was proved mainly located in the cytoplasm. Furthermore, yeast one-hybrid screening and dual-luciferase reporter gene assay showed that PcFBA-1 was able to bind to FPPS promoter both in vitro and in vivo to enhance the activity of FPPS promoter. In summary, this study identifies a new transcription factor PcFBA-1 in P. cabin, which directly binds to the FPPS gene promoter to enhance the promoter activity. This had laid a foundation for the biosynthesis of patchouli alcohol and other active ingre-dients and provided a basis for metabolic engineering and genetic improvement of P. cabin.


Subject(s)
Pogostemon , Amino Acid Sequence , Cloning, Molecular , Geranyltranstransferase/genetics , Transcription Factors/genetics
11.
Hortic Res ; 6: 133, 2019.
Article in English | MEDLINE | ID: mdl-31814986

ABSTRACT

Lysine succinylation is a novel, naturally occurring posttranslational modification (PTM) in living organisms. Global lysine succinylation identification has been performed at the proteomic level in various species; however, the study of lysine succinylation in plant species is relatively limited. Patchouli plant (P. cablin (Blanco) Benth., Lamiaceae) is a globally important industrial plant and medicinal herb. In the present study, lysine succinylome analysis was carried out in patchouli plants to determine the potential regulatory role of lysine succinylation in patchouli growth, development, and physiology. The global succinylation sites and proteins in patchouli plants were screened with an immunoprecipitation affinity enrichment technique and advanced mass spectrometry-based proteomics. Several bioinformatic analyses, such as function classification and enrichment, subcellular location predication, metabolic pathway enrichment and protein-protein interaction networking, were conducted to characterize the functions of the identified sites and proteins. In total, 1097 succinylation sites in 493 proteins were detected in patchouli plants, among which 466 succinylation sites in 241 proteins were repeatedly identified within three independent experiments. The functional characterization of these proteins indicated that the tricarboxylic acid (TCA) cycle, oxidative phosphorylation, photosynthesis processes, and amino acid biosynthesis may be regulated by lysine succinylation. In addition, these succinylated proteins showed a wide subcellular location distribution, although the chloroplast and cytoplasm were the top two preferred cellular components. Our study suggested the important role of lysine succinylation in patchouli plant physiology and biology and could serve as a useful reference for succinylation studies in other medicinal plants.

12.
Int J Mol Sci ; 20(23)2019 Nov 30.
Article in English | MEDLINE | ID: mdl-31801204

ABSTRACT

The JASMONATE ZIM DOMAIN (JAZ) proteins act as negative regulators in the jasmonic acid (JA) signaling pathways of plants, and these proteins have been reported to play key roles in plant secondary metabolism mediated by JA. In this study, we firstly isolated one JAZ from P. cablin, PatJAZ6, which was characterized and revealed based on multiple alignments and a phylogenic tree analysis. The result of subcellular localization indicated that the PatJAZ6 protein was located in the nucleus of plant protoplasts. The expression level of PatJAZ6 was significantly induced by the methyl jasmonate (MeJA). Furthermore, by means of yeast two-hybrid screening, we identified two transcription factors that interact with the PatJAZ6, the PatMYC2b1 and PatMYC2b2. Virus-induced gene silencing (VIGS) of PatJAZ6 caused a decrease in expression abundance, resulting in a significant increase in the accumulation of patchouli alcohol. Moreover, we overexpressed PatJAZ6 in P. cablin, which down-regulated the patchoulol synthase expression, and then suppressed the biosynthesis of patchouli alcohol. The results demonstrate that PatJAZ6 probably acts as a repressor in the regulation of patchouli alcohol biosynthesis, contributed to a model proposed for the potential JA signaling pathway in P. cablin.


Subject(s)
Gene Expression Regulation, Plant , Plant Proteins/genetics , Pogostemon/genetics , Repressor Proteins/genetics , Sesquiterpenes/metabolism , Acetates/pharmacology , Amino Acid Sequence , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Cyclopentanes/metabolism , Cyclopentanes/pharmacology , Gene Silencing , Isomerases/genetics , Isomerases/metabolism , Oxylipins/metabolism , Oxylipins/pharmacology , Phylogeny , Plant Growth Regulators/metabolism , Plant Growth Regulators/pharmacology , Plant Leaves/drug effects , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Proteins/metabolism , Pogostemon/classification , Pogostemon/drug effects , Pogostemon/metabolism , Protoplasts/drug effects , Protoplasts/metabolism , Repressor Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Signal Transduction , Trans-Activators/genetics , Trans-Activators/metabolism , Two-Hybrid System Techniques
13.
Bot Stud ; 60(1): 11, 2019 Jul 02.
Article in English | MEDLINE | ID: mdl-31267260

ABSTRACT

BACKGROUND: Many commercially important drug and flavor compounds are secondary metabolites of terpenoid origin. Pogostemon cablin, a commercially important industrial and medicinal crop, accumulates abundant patchouli oil comprised of more than 24 unique sesquiterpene compounds, with the most abundant being patchouli alcohol. RESULTS: In this study, we analyzed the P. cablin transcriptome library, obtaining 74 terpenoid biosynthesis-related genes, and identified their expression patterns in leaves, stems, and flowers. These genes are members of 15 different families, and we detected all the enzymes involved in the sesquiterpenes pathway that are responsible for patchoulol biosynthesis. Sequence structure, homology, conserved domain properties, and phylogeny of certain identified genes were systematically investigated. Color complementation assay was used to verify the functional activity of the MEP pathway proteins. Exogenous hormone treatment revealed that patchoulol synthesis is induced by methyl jasmonate (MeJA). Quantitative reverse-transcription PCR analysis indicated that the MVA pathway genes (acetoacetyl-CoA thiolase, 3-hydroxy-3-methylglutaryl-coenzyme A reductase, mevalonate diphosphate decarboxylase, and farnesyl diphosphate synthase) participate in patchoulol biosynthesis and are mediated by MeJA. CONCLUSIONS: Taken together, this is the first report of integrated analysis of P. cablin MVA and MEP pathway related genes, providing a better understanding of terpenoid and/or patchoulol biosynthesis in P. cablin, and the basis for improving patchoulol production through genetic engineering.

14.
BMC Plant Biol ; 19(1): 266, 2019 Jun 20.
Article in English | MEDLINE | ID: mdl-31221095

ABSTRACT

BACKGROUND: Pogostemon cablin (Blanco) Benth. (Patchouli) is an important aromatic and medicinal plant and widely used in traditional Chinese medicine as well as in the perfume industry. Patchoulol is the primary bioactive component in P. cablin, its biosynthesis has attracted widespread interests. Previous studies have surveyed the putative genes involved in patchoulol biosynthesis using next-generation sequencing method; however, technical limitations generated by short-read sequencing restrict the yield of full-length genes. Additionally, little is known about the expression pattern of genes especially patchoulol biosynthesis related genes in response to methyl jasmonate (MeJA). Our understanding of patchoulol biosynthetic pathway still remained largely incomplete to date. RESULTS: In this study, we analyzed the morphological character and volatile chemical compounds of P. cablin cv. 'Zhanxiang', and 39 volatile chemical components were detected in the patchouli leaf using GC-MS, most of which were sesquiterpenes. Furthermore, high-quality RNA isolated from leaves and stems of P. cablin were used to generate the first full-length transcriptome of P. cablin using PacBio isoform sequencing (Iso-Seq). In total, 9.7 Gb clean data and 82,335 full-length UniTransModels were captured. 102 transcripts were annotated as 16 encoding enzymes involved in patchouli alcohol biosynthesis. Accorded with the uptrend of patchoulol content, the vast majority of genes related to the patchoulol biosynthesis were up-regulated after MeJA treatment, indicating that MeJA led to an increasing synthesis of patchoulol through activating the expression level of genes involved in biosynthesis pathway of patchoulol. Moreover, expression pattern analysis also revealed that transcription factors participated in JA regulation of patchoulol biosynthesis were differentially expressed. CONCLUSIONS: The current study comprehensively reported the morphological specificity, volatile chemical compositions and transcriptome characterization of the Chinese-cultivated P. cablin cv. 'Zhanxiang', these results contribute to our better understanding of the physiological and molecular features of patchouli, especially the molecular mechanism of biosynthesis of patchoulol. Our full-length transcriptome data also provides a valuable genetic resource for further studies in patchouli.


Subject(s)
Gene Expression Regulation, Plant , Pogostemon/genetics , Sesquiterpenes/metabolism , Acetates , Biosynthetic Pathways , Cyclopentanes , Gene Expression Profiling , Oxylipins , Transcriptome
15.
Rice (N Y) ; 12(1): 21, 2019 Apr 08.
Article in English | MEDLINE | ID: mdl-30963280

ABSTRACT

BACKGROUND: The development and utilization of genetic markers play a pivotal role in marker-assisted breeding of rice cultivars during pyramiding of valuable genes. Among molecular markers, SNPs have become the most promising due to their wide distribution within genomes and suitability for high -throughput automated genotyping. Although metadata of SNPs have been identified via next generation sequencing in rice, a large gap between the development of SNP markers and the application in breeding still exists. To promote the application of SNP markers based on the KASP (Kompetitive Allele-Specific PCR) method in rice breeding, a set of core SNP arrays was built via the screening of SNP databases and literature resources based on the KASP method. RESULTS: Five hundred and ninety six SNPs classified into eight subsets including quality control, indica-indica variation, highly polymorphic, functional genes, key genes targeting sites, gene cloned region, important trait associated and gap filling sites were chosen to design KASP primers and 565 out of them were successfully designed, and the assay design success rate was 94.8%. Finally, 467 out of the 565 successfully-designed SNPs can display diversity at the loci were used to develop a set of core SNP arrays. To evaluate the application value of the core SNP markers in rice breeding, 481 rice germplasms were genotyped with three functional KASP markers designed from the sequences of GBSSI, SSIIa, and Badh2 from the core SNP arrays for estimation of their grain quality performance. Eighteen rice lines, including Xiangwanxian 13, Basmati 370, Ruanhua A, and PR 33319-9-1-1-5-3-5-4-1, harbor all three favorable alleles. The core KASP arrays were also used for rice germplasm assessment, genetic diversity and population evaluation. Four hundred and eighty-one rice germplasms were divided into 3 groups: POP1, POP2 and POP3. POP1 and POP2 were indica rice subgroups consisting of 263 and 186 rice germplasms, respectively. POP3 was a japonica rice subgroup consisting of 32 rice germplasms. The average FST value for the three subgroups was 0.3501; the FST value of POP1 and POP3 was the largest (0.5482), while that of POP1 and POP2 was the smallest (0.0721). The results showed that the genetic distance between the japonica and indica rice subspecies was large, indicating that the core SNP markers were effective at discriminating the population structure of the germplasms. Finally, the core KASP arrays were used for association analysis with milled grain traits. A total of 31 KASP markers were significantly associated (P < 0.01) with ML and the LWR. Among the 31 markers, 13 were developed based on cloned genes or on identified loci related to yield traits. Notably, several KASP markers associated with grain quality were also found to be associated with brown planthopper resistance or green leafhopper resistance simultaneously. CONCLUSIONS: The core KASP arrays developed in our study were efficient and versatile for rice germplasm assessment, genetic diversity and population evaluation and are valuable for promoting SNP molecular breeding in rice. Our study demonstrated that useful assays combined with molecular breeding can be exploited for important economic trait improvement in rice breeding.

16.
Adv Ther (Weinh) ; 1(7)2018 Nov.
Article in English | MEDLINE | ID: mdl-31435500

ABSTRACT

Two-dimensional monolayer cell cultures are routinely utilized for preclinical cancer drug screening, but the results often do not translate well when drugs are tested in vivo. To address this limitation, a biocompatible chitosan-PEG hydrogel (CSPG gel) was synthesized to create a gel that can be easily dispensed into 96-well plates at room temperature and neutral pH. The stiffness of this gel was tailored to be within the stiffness range of human glioblastoma tissue to promote the formation of tumor spheroids. Differences in cell morphology, proliferation rate, and dose-dependent drug cytotoxicity were compared among cell spheroids grown on CSPG gels, cells in monolayer culture on tissue culture polystyrene and cells cultured on Matrigel. Tumor spheroids on CSPG gels displayed statistically significantly greater resistance to chemotherapeutics than in the conditions where cells did not form spheroids. Gene expression analysis suggests that resistance of cells on CSPG gels to the therapy may be partially attributed to upregulation of ATP-binding cassette transporters and downregulation of DNA mismatch repair genes, which was stimulated by spheroid formation. These findings suggest CSPG gel generates tumor spheroids that better reflect the malignant behavior of GBM and provides a cost-effective substrate for preclinical, high-throughput screening of potential cancer therapeutics.

17.
Biochem Biophys Res Commun ; 480(3): 394-401, 2016 Nov 18.
Article in English | MEDLINE | ID: mdl-27771249

ABSTRACT

Genetic analysis revealed that narrow leaf, small panicle, thin and slender stems as well as low fertility rate of an Indica rice variety were recessive traits and controlled by a single gene. Applying map-based cloning strategy, a novel narrow leaf gene, which was named nal11 was delimited to an interval of 58.3 kb between the InDel markers N10 and InD5016. There are 9 genes in the mapping interval, and only a heat shock DNAJ protein encode gene (Os07g09450) has a specific G to T SNP, which was occurred at the last base of the second exon of Os07g09450 in ZYX. 5' and 3' RACE result shown that there were two transcripts in NAL11, and the SNP in nal11 leads to a variable shear of mRNA. In addition, this type of mRNA alternative splicing together with a stop codon closely followed the SNP which caused termination of translation destroyed the DNAJ domain of nal11's product. These results suggested that the heat shock DNAJ gene was most likely to be the candidate gene of nal11. The results of RT-PCR and real-time PCR further verified that the SNP in the ZYX-nal11 gene affects mRNA splicing pattern. Phenotype of ZYX may be caused by a statistically significant reduction in the total number of small veins in leaf, size and number of small vascular bundles and cells in stems, similar to several previous reported mutations. The basic molecular information we provide here will be useful for further investigations of the physiological function of the heat shock DNAJ gene, which will be helpful in better understanding the role of the DNAJ family in regulation of plant type traits such as leaf width of rice.


Subject(s)
Chromosomes, Plant/genetics , Gene Expression Regulation, Plant/physiology , Oryza/genetics , Plant Leaves/growth & development , Plant Leaves/genetics , Chromosome Mapping , Cloning, Molecular , Organ Specificity/genetics , Oryza/growth & development
18.
Rice (N Y) ; 9(1): 48, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27659284

ABSTRACT

BACKGROUND: Grain appearance quality is a main determinant of market value in rice and one of the highly important traits requiring improvement in breeding programs. The genetic basis of grain shape and endosperm chalkiness have been given significant attention because of their importance in affecting grain quality. Meanwhile, the introduction of NGS (Next Generation Sequencing) has a significant part to play in the area of genomics, and offers the possibility for high-resolution genetic map construction, population genetics analysis and systematic expression profile study. RESULTS: A RIL population derived from an inter-subspecific cross between indica rice PYZX and japonica rice P02428 was generated, based on the significant variations for the grain morphology and cytological structure between these two parents. Using the Genotyping-By-Sequencing (GBS) approach, 2711 recombination bin markers with an average physical length of 137.68 kb were obtained, and a high-density genetic map was constructed. Global genetic mapping of QTLs affecting grain shape and chalkiness traits was performed across four environments and the newly identified stable loci were obtained. Twelve important QTL clusters were detected, four of which were coincident with the genomic regions of cloned genes or fine mapped QTL reported. Eight novel QTL clusters (including six for grain shape, one for chalkiness, and one for both grain shape and chalkiness) were firstly obtained and highlighted the value and reliability of the QTL analysis. The important QTL cluster on chromosome 5 affects multiple traits including circularity (CS), grain width (GW), area size of grain (AS), percentage of grains with chalkiness (PGWC) and degree of endosperm chalkiness (DEC), indicating some potentially pleiotropic effects. The transcriptome analysis demonstrated an available gene expression profile responsible for the development of chalkiness, and several DEGs (differentially expressed genes) were co-located nearby the three chalkiness-related QTL regions on chromosomes 5, 7, and 8. Candidate genes were extrapolated, which were suitable for functional validation and breeding utilization. CONCLUSION: QTLs affecting grain shape (grain width, grain length, length-width ratio, circularity, area size of grain, and perimeter length of grain) and chalkiness traits (percentage of grains with chalkiness and degree of endosperm chalkiness) were mapped with the high-density GBS-SNP based markers. The important differentially expressed genes (DEGs) were co-located in the QTL cluster regions on chromosomes 5, 7 and 8 affecting PGWC and DEC parameters. Our research provides a crucial insight into the genetic architecture of rice grain shape and chalkiness, and acquired potential candidate loci for molecular cloning and grain quality improvement.

20.
BMC Genomics ; 17: 220, 2016 Mar 11.
Article in English | MEDLINE | ID: mdl-26969372

ABSTRACT

BACKGROUND: Recent advances in sequencing technology have opened a new era in RNA studies. Novel types of RNAs such as long non-coding RNAs (lncRNAs) have been discovered by transcriptomic sequencing and some lncRNAs have been found to play essential roles in biological processes. However, only limited information is available for lncRNAs in Drosophila melanogaster, an important model organism. Therefore, the characterization of lncRNAs and identification of new lncRNAs in D. melanogaster is an important area of research. Moreover, there is an increasing interest in the use of ChIP-seq data (H3K4me3, H3K36me3 and Pol II) to detect signatures of active transcription for reported lncRNAs. RESULTS: We have developed a computational approach to identify new lncRNAs from two tissue-specific RNA-seq datasets using the poly(A)-enriched and the ribo-zero method, respectively. In our results, we identified 462 novel lncRNA transcripts, which we combined with 4137 previously published lncRNA transcripts into a curated dataset. We then utilized 61 RNA-seq and 32 ChIP-seq datasets to improve the annotation of the curated lncRNAs with regards to transcriptional direction, exon regions, classification, expression in the brain, possession of a poly(A) tail, and presence of conventional chromatin signatures. Furthermore, we used 30 time-course RNA-seq datasets and 32 ChIP-seq datasets to investigate whether the lncRNAs reported by RNA-seq have active transcription signatures. The results showed that more than half of the reported lncRNAs did not have chromatin signatures related to active transcription. To clarify this issue, we conducted RT-qPCR experiments and found that ~95.24% of the selected lncRNAs were truly transcribed, regardless of whether they were associated with active chromatin signatures or not. CONCLUSIONS: In this study, we discovered a large number of novel lncRNAs, which suggests that many remain to be identified in D. melanogaster. For the lncRNAs that are known, we improved their characterization by integrating a large number of sequencing datasets (93 sets in total) from multiple sources (lncRNAs, RNA-seq and ChIP-seq). The RT-qPCR experiments demonstrated that RNA-seq is a reliable platform to discover lncRNAs. This set of curated lncRNAs with improved annotations can serve as an important resource for investigating the function of lncRNAs in D. melanogaster.


Subject(s)
Drosophila melanogaster/genetics , RNA, Long Noncoding/genetics , Animals , Chromatin/genetics , Chromatin Immunoprecipitation , Molecular Sequence Annotation , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, RNA
SELECTION OF CITATIONS
SEARCH DETAIL
...