Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.263
Filter
1.
Front Immunol ; 15: 1284579, 2024.
Article in English | MEDLINE | ID: mdl-38690279

ABSTRACT

Introduction: The programmed cell death (PCD) pathway plays an important role in restricting cancer cell survival and proliferation. However, limited studies have investigated the association between genetic variants in the 3'-untranslated region of the PCD pathway genes and breast cancer outcomes. Methods: In this study, we genotyped 28 potentially functional single nucleotide polymorphisms (SNPs) in 23 PCD pathway genes in 1,177 patients with early-stage breast cancer (EBC) from a Han Chinese population. The median follow-up period was 174 months. Results: Among all the candidate SNPs, four independent SNPs (rs4900321 and rs7150025 in ATG2B, rs6753785 in BCL2L11, and rs2213181 in c-Kit) were associated with invasive disease-free survival (iDFS), distant disease-free survival (DDFS), breast cancer-specific survival (BCSS) and overall survival (OS), respectively. Further combined genotypes of these four SNPs revealed that the survival decreased as the number of unfavorable genotypes increased (Ptrend = 1.0 × 10-6, 8.5 × 10-8, 3.6 × 10-4, and 1.3 × 10-4 for iDFS, DDFS, BCSS, and OS, respectively). Receiver operating characteristic curve analysis demonstrated that incorporating unfavorable genotypes and clinicopathological variables improved the ability to predict EBC survival (P = 0.006, 0.004, 0.029, and 0.019 for iDFS, DDFS, BCSS, and OS, respectively). Additionally, rs6753785 and rs2213181 were associated with BCL2L11 and c-Kit mRNA expression, respectively. Conclusions: Our results suggest that these four SNPs may act as novel biomarkers for EBC survival, possibly by modulating the expression of the corresponding genes.


Subject(s)
3' Untranslated Regions , Breast Neoplasms , Polymorphism, Single Nucleotide , Humans , Female , Breast Neoplasms/genetics , Breast Neoplasms/mortality , Breast Neoplasms/pathology , Middle Aged , Prognosis , 3' Untranslated Regions/genetics , Adult , Neoplasm Staging , Genotype , Aged , Biomarkers, Tumor/genetics , Apoptosis/genetics , Genetic Predisposition to Disease
2.
Curr Med Sci ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748367

ABSTRACT

Maxillary protrusion combined with mandibular retraction is a highly prevalent but extremely complex maxillofacial deformity that can have a serious negative impact on patients' facial aesthetics and mental health. The traditional orthodontic treatment strategy often involves extracting 4 first premolars and conventional fixed techniques, combined with mini-implant screws, to retract the anterior teeth and improve facial protrusion. In recent years, an invisible orthodontic technique, without brackets, has become increasingly popular. However, while an invisible aligner has been used in some cases with reasonable results, there remain significant challenges in achieving a perfect outcome. This case report presents an adolescent patient with bimaxillary protrusion and mandibular retrognathia. Based on the characteristics of the invisible aligners and the growth characteristics of the adolescent's teeth and jawbone, we designed precise three-dimensional tooth movement and corresponding resistance/over-correction for each tooth, while utilizing the patient's jawbone growth potential to promote rapid development of the mandible, accurately and efficiently correcting bimaxillary protrusion and skeletal mandibular retrognathia. The patient's facial aesthetics, especially the lateral morphology, have been greatly improved, and various aesthetic indicators have also shown significant changes, and to the patient's great benefit, invasive mini-implant screws were not used during the treatment. This case highlights the advantages of using invisible aligners in adolescent maxillary protrusion combined with mandibular retraction patients. Furthermore, comprehensive and accurate design combined with good application of growth potential can also enable invisible orthodontic technology to achieve perfect treatment effects in tooth extractions, providing clinical guidance for orthodontists.

3.
SSM Popul Health ; 26: 101672, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38708407

ABSTRACT

Background: Maternal education is one of key factors affecting nurturing environment which significantly impacts children's height levels throughout their developmental stages. However, the influence of maternal education on children's height is less studied. This study aims to investigate the dynamic influence of maternal education on children's height among Chinese children aged 0-18 years. Methods: Children undergoing health examinations from January 2021 to September 2023 were included in this study. Clinical information including height, weight, maternal pregnancy history, blood specimens for bone metabolism-related indicators and maternal education level was collected. Children's height was categorized into 14 groups based on age and gender percentiles, following WHO 2006 growth standards. One-way analysis of variance (ANOVA), linear regression, chi-square test and Fisher's exact test were applied for data analysis. Results: A total of 6269 samples were collected, including 3654 males and 2615 females, with an average age of 8.38 (3.97) for males and 7.89 (3.55) for females. Significant correlations between maternal education level, birth weight, birth order, weight percentile, vitamin D, serum phosphorus, alkaline phosphatase levels, and children's height were identified. Birth weight's influence on height varied across age groups. Compared with normal birth weight children, low birth weight children exhibited catch-up growth within the first 6 years and a subsequent gradual widening of the height gap from 6 to 18 years old. Remarkably, the impact of maternal education on height became more pronounced among children above 3-6 years old, which can mitigate the effect of low birth weight on height. Conclusion: We found that weight percentile, birth weight, birth order, bone marker levels, and maternal education level have significant effect on height. Maternal education attenuates the impact of low birth weight on height. The findings indicated that maternal education plays a consistent and critical role in promoting robust and healthy growth.

4.
Biomater Sci ; 2024 May 07.
Article in English | MEDLINE | ID: mdl-38711336

ABSTRACT

Developing biomaterials capable of promoting bone regeneration in bacteria-infected sites is of utmost urgency for periodontal disease therapies. Here we produce a hybrid hydrogel by integrating CuS nanoparticles (CuSNPs), which could kill bacteria through photothermal therapy (PTT) triggered by a near infrared (NIR) light, and a gelatin methacryloyl (GelMA) hydrogel, which is injectable and biocompatible. Specifically, CuSNPs were precipitated by chitosan (CS) firstly, then grafted with methacrylic anhydride (MA) to form CuSNP@CS-MA, which was photo-crosslinked with GelMA to synthesize hybrid hydrogels (GelMA/CuSNP). The hybrid hydrogels exhibited a broad-spectrum antibacterial property that could be spatiotemprorally manipulated through applying a NIR light. Their mechanical properties were adjustable by controlling the concentration of CuSNPs, enabling the hydrogels to become more adapted to the oral diseases. Meanwhile, the hybrid hydrogels showed good cytocompatibility in vitro and improved hemostasis in vivo. Moreover, they accelerated alveolar osteogenesis and vascular genesis, successfully treating periodontis in four weeks in a rat model. GelMA/CuSNP hydrogels showed a broad-spectrum sterilization ability via PTT in vitro and outstanding antibacterial property in vivo, suggesting that the hybrid hydrogels could function in the challenging, bacteria-rich, oral environment. Such injectable hybrid hydrogels, capable of achieving both facilitated osteogenesis and NIR-inducible sterilization, represent a new biomaterial for treating periodontitis.

5.
Adv Mater ; : e2306701, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38727004

ABSTRACT

The photovoltaic cells (PVs) are able to convert solar energy to electric energy, while energy storage devices are required to be equipped due to the fluctuations of sunlight. However, the electrical connection of PVs and energy storage devices leads to increased energy consumption, and thus energy storage ability and utilization efficiency are decreased. One of the solutions is to explore an integrated photoelectrochemical energy conversion-storage device. Up to date, the integrated photo-rechargeable Li-ion batteries often suffer from unstable photo-active materials and flammable electrolytes under illumination, with concerns in safety risk and limited lifetime. To address the critical issues, here a novel photo-rechargeable aluminum battery (PRAB) is designed with safe ionic liquid electrolytes and stable polyaniline photo-electrodes. The integrated PRAB presents stable operation with enhanced reversible specific capacity ∼191% under illumination. Meanwhile, a simplified continuum model is established to provide rational guidance for designing electrode structures along with charging/discharging strategy to meet the practical operation conditions. The as-designed PRAB presents energy saving efficiency ∼61.92% upon charging and energy output increment ∼31.25% during discharging under illumination. The strategy of designing and fabricating stable and safe photo-rechargeable non-aqueous Al battery highlights the pathway for substantially promoting the utilization efficiency of solar energy. This article is protected by copyright. All rights reserved.

6.
Article in English | MEDLINE | ID: mdl-38706356

ABSTRACT

BACKGROUND: Intervertebral disc degeneration (IVDD), a key contributor to degenerative spinal diseases such as cervical spondylosis, significantly influences the quality of life of patients. Tuina, historically employed in the clinical management of cervical spondylosis, has demonstrated positive therapeutic outcomes; however, the mechanism of Tuina remains unclear. OBJECTIVE: This study examined the efficacy of Tuina in correcting the imbalanced structure of the cervical spine and its impact on apoptotic chondrocytes within the cervical disc. The underlying mechanisms were explored using a rabbit model of IVDD induced by dynamic and static imbalances. METHODS: The IVDD rabbit model was established by restraining the head in a downward position for 12 weeks (Model group). In the Tuina1 group, treatment was performed on the posterior cervical trapezius muscle daily for 2 weeks, whereas in the Tuina2 group, treatment was performed on both the posterior cervical trapezius and anterior sternocleidomastoid muscles daily for 2 weeks. After treatment, X-ray, micro-computed tomography (CT), histological staining, qRT-PCR, and western blotting were used to evaluate the mechanism by which Tuina inhibits chondrocyte apoptosis. RESULTS: The results demonstrated that Tuina treatment inhibited chondrocyte apoptosis in cervical discs by adjusting the neck structure balance, and a more significant therapeutic effect was observed in the Tuina2 group. Lateral cervical spine X-ray and CT scans in rabbits revealed notable improvements in cervical spine curvature and vertebral structure in the treatment groups compared with those in the Model group. Hematoxylin and eosin staining and TUNEL staining further confirmed the positive impact of Tuina treatment on intervertebral disc tissue morphology and chondrocyte apoptosis. Additionally, western blotting and immunohistochemical analysis showed that Tuina treatment suppressed chondrocyte apoptosis by downregulating Bax and caspase-3 while upregulating Bcl-2. Western blotting results further indicated that Tuina could activate the FAK/PI3K/Akt signaling pathway by mediating integrin-ß1. CONCLUSION: Tuina treatment inhibited chondrocyte apoptosis in cervical discs by activating the FAK/PI3K/Akt signaling pathway, providing convincing evidence to support Tuina treatment as a promising method for IVDD.

7.
Molecules ; 29(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38731473

ABSTRACT

Chalkophomycin is a novel chalkophore with antibiotic activities isolated from Streptomyces sp. CB00271, while its potential in studying cellular copper homeostasis makes it an important probe and drug lead. The constellation of N-hydroxylpyrrole, 2H-oxazoline, diazeniumdiolate, and methoxypyrrolinone functional groups into one compact molecular architecture capable of coordinating cupric ions draws interest to unprecedented enzymology responsible for chalkophomycin biosynthesis. To elucidate the biosynthetic machinery for chalkophomycin production, the chm biosynthetic gene cluster from S. sp. CB00271 was identified, and its involvement in chalkophomycin biosynthesis was confirmed by gene replacement. The chm cluster was localized to a ~31 kb DNA region, consisting of 19 open reading frames that encode five nonribosomal peptide synthetases (ChmHIJLO), one modular polyketide synthase (ChmP), six tailoring enzymes (ChmFGMNQR), two regulatory proteins (ChmAB), and four resistance proteins (ChmA'CDE). A model for chalkophomycin biosynthesis is proposed based on functional assignments from sequence analysis and structure modelling, and is further supported by analogy to over 100 chm-type gene clusters in public databases. Our studies thus set the stage to fully investigate chalkophomycin biosynthesis and to engineer chalkophomycin analogues through a synthetic biology approach.


Subject(s)
Multigene Family , Peptide Synthases , Polyketide Synthases , Streptomyces , Streptomyces/genetics , Streptomyces/enzymology , Streptomyces/metabolism , Polyketide Synthases/genetics , Polyketide Synthases/metabolism , Polyketide Synthases/chemistry , Peptide Synthases/metabolism , Peptide Synthases/genetics , Peptide Synthases/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry
8.
Foodborne Pathog Dis ; 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38607615

ABSTRACT

Listeriosis is a globally rare foodborne disease that causes fetal-placental infection, leading to adverse pregnancy outcome, while limited research among pregnant women is available in China. This study was therefore aimed at analyzing the incidence, clinical manifestations, and clinical outcome of listeriosis among pregnant women and its associated dietary behavior risk factors in prevention. A hospital-based case-control study had been conducted from January 2017 to December 2021. Clinical data, laboratory information, and questionnaires including dietary behaviors and personal hygiene were collected within 2 days after case diagnosis. There were 48 pregnant women, including 12 cases and 36 controls, with an average age of 31.19 ± 3.75 years. The incidence of admission-based listeriosis among pregnant women was 1.6058 per 10,000. The 12 strains were divided into 3 serotypes: 1/2a(83.33%), 1/2b(8.33%), and 4b(8.33%). Among the cases, 5 cases (41.67%) resulted in abortion, 3 cases (25%) induced preterm labor, and 4 cases (33.33%) had full-term deliveries after treatment. There were 7 live births in the case group, among which 6 were admitted to the neonatal intensive care unit (NICU), while 1 case had a healthy fetal outcome. All patients in the control group gave birth to live fetuses. Epidemiological investigation revealed that pregnant women dining at restaurants three or more times per week might increase the risk of having Listeria infection. There were no significant differences in dietary consumed behaviors, hand hygiene, and refrigerator usage behaviors between case and control groups. The study suggested that dining at restaurants might be associated with Listeria infection among pregnant women. Therefore, it is essential to enhance education on listeriosis serious consequences and promote healthy dietary and hygiene habits among pregnant women.

9.
Angew Chem Int Ed Engl ; : e202402215, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38581164

ABSTRACT

The development of a methodology for synthesizing value-added urea (CO(NH2)2) via a renewable electricity-driven C-N coupling reaction under mild conditions is highly anticipated. However, the complex catalytic active sites that act on the carbon and nitrogen species make the reaction mechanism unclear, resulting in a low efficiency of C-N coupling from the co-reduction of carbon dioxide (CO2) and nitrate (NO3 -). Herein, we propose a novel tandem catalyst of Mo-PCN-222(Co), in which the Mo sites serve to facilitate nitrate reduction to the *NH2 intermediate, while the Co sites enhance CO2 reduction to carbonic oxide (CO), thus synergistically promoting C-N coupling. The synthesized Mo-PCN-222(Co) catalyst exhibited a noteworthy urea yield rate of 844.11 mg h-1 g-1, alongside a corresponding Faradaic efficiency of 33.90 % at -0.4 V vs. reversible hydrogen electrode (RHE). By combining in situ spectroscopic techniques with density functional theory calculations, we demonstrate that efficient C-N coupling is attributed to a tandem system in which the *NH2 and *CO intermediates produced by the Mo and Co active sites of Mo-PCN-222(Co) stabilize the formation of the *CONH2 intermediate. This study provides an effective avenue for the design and synthesis of tandem catalysts for electrocatalytic urea synthesis.

10.
Cell Prolif ; : e13640, 2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38556840

ABSTRACT

Macrophages play a pivotal role in the immunological cascade activated in response to biomedical implants, which predetermine acceptance or rejection of implants by the host via pro- and anti-inflammatory polarisation states. The role of chemical signals in macrophage polarisation is well-established, but how physical cues regulate macrophage function that may play a fundamental role in implant-bone interface, remains poorly understood. Here we find that bone marrow-derived macrophages (BMDM) cultured on polyacrylamide gels of varying stiffness exhibit different polarisation states. BMDM are 'primed' to a pro-inflammatory M1 phenotype on stiff substrates, while to an anti-inflammatory M2 phenotype on soft and medium stiffness substrates. It is further observed that matrix stiffening increases Piezo1 expression, as well as leads to subsequent activation of the mechanotransduction signalling effector YAP, thus favouring M1 polarisation whilst suppressing M2 polarisation. Moreover, upon treatment with YAP inhibitor, we successfully induce macrophage re-polarisation to the M2 state within the implant site microenvironment, which in turn promotes implant osseointegration. Collectively, our present study thus characterises the critical role of the Piezo1-YAP signalling axis in macrophage mechanosensing and stiffness-mediated macrophage polarisation and provides cues for the design of immuno-modulatory biomaterials that can regulate the macrophage phenotype.

11.
Article in English | MEDLINE | ID: mdl-38591200

ABSTRACT

BACKGROUND: In the domain of functional gastrointestinal disorders, Functional Dyspepsia (FD) stands out due to its widespread occurrence internationally. Historically, electroacupuncture (EA) has been employed as a therapeutic modality for FD, demonstrating notable clinical efficacy. OBJECTIVES: This research aimed to delve into the impact of EA on stress responses, minor duodenal inflammatory processes, and the integrity of the intestinal barrier within FD-affected rodent models while also elucidating the underlying mechanisms. METHODS: Thirty-six male Wistar rats were evenly distributed into three cohorts: a normal, a modeled FD, and an EA treatment group. The FD condition in the rats, barring those in the normal, was induced through a series of multifactorial procedures. For the EA cohort, the rats received electroacupuncture at the acupoints RN12 (Zhongwan) and ST36 (Zusanli) for 20 minutes daily over a span of one week. The gastric residue rate (GRR), intestinal propulsion rate (IPR), and changes in emotional state were measured in each group of rats. Additionally, serum levels of corticotropin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH), and corticosterone (CORT) were detected, and the duodenal inflammatory condition and intestinal mucosal barrier status were observed through staining and fluorescence. The expression levels of Claudin-1, Junctional Adhesion Molecule 1 (JAM-1), Corticotropin-Releasing Factor (CRF), and Corticotropin-Releasing Factor Receptor 1 (CRF-R1) were also detected. RESULTS: The study demonstrated that EA had a positive effect on body weight and food intake, GRR, and IPR in FD rats. Additionally, the EA group showed a decrease in serum levels of CRH, ACTH, and CORT, as well as a decrease in the number of duodenal mast cells and tryptase content. Furthermore, the expression of tight junction proteins Claudin-1 and JAM-1 was increased in the EA group compared to the model group. EA also reduced the levels of CRF and CRF-R1 in the hypothalamus and duodenum. CONCLUSION: EA has been shown to improve the stress state of FD rats, inhibit the activation of mast cells in the duodenum, and reduce low-grade inflammatory response and damage to the intestinal mucosal barrier. It is believed that EA achieves these effects by modulating the expression of CRF and its receptors in the brain-gut interaction pathway through the CRF signaling pathway. This provides a new approach to treating FD.

12.
Front Microbiol ; 15: 1332458, 2024.
Article in English | MEDLINE | ID: mdl-38601926

ABSTRACT

Eravacycline (ERV) has emerged as a therapeutic option for the treatment of carbapenem-resistant pathogens. However, the advent of heteroresistance (HR) to ERV poses a challenge to these therapeutic strategies. This study aimed to investigate ERV HR prevalence among common clinical isolates and further characterize ERV HR in carbapenem-resistant Klebsiella pneumoniae (CRKP). A total of 280 clinical pathogens from two centers were selected for HR and analyzed using population analysis profiling (PAP) and modified E-tests. The PAP assay revealed an overall ERV HR prevalence of 0.7% (2/280), with intermediate heterogeneity observed in 24.3% (68/280) of strains. The proportion of heteroresistant strains was 18.3% according to modified E-test results. A time-killing assay demonstrated that CRKP CFU increased significantly after 10 h of ERV treatment, contributing to the reduced bactericidal effect of ERV in vitro. Interestingly, dual treatment with ERV and polymyxin B effectively inhibited the total CFU, simultaneously reducing the required polymyxin B concentration. Furthermore, fitness cost measurements revealed a growth trade-off in CRKP upon acquiring drug resistance, highlighting fitness costs as crucial factors in the emergence of ERV HR in CRKP. Overall, the findings of the current study suggest that ERV HR in clinical strains presents a potential obstacle in its clinical application.

13.
Food Funct ; 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38634265

ABSTRACT

Background: Chronic inflammatory stimulation is a major risk factor for mild cognitive impairment. Mushroom consumption and inflammatory factors may play an important role in the pathogenesis of mild cognitive impairment. Additionally, consuming mushrooms can reduce the levels of inflammatory cytokines and preserve cognitive function. Therefore, this study aimed to investigate the relationship between mushroom consumption and serum inflammatory cytokines and mild cognitive impairment (MCI). Methods: Binary logistic regression was used to determine the relationship between mushroom consumption and MCI in 550 participants. Subsequently, mediation analysis was used to analyze the relationship between mushroom consumption, inflammatory factors, and the Montreal Cognitive assessment (MoCA) score in 248 participants. Results: Mushroom consumption was associated with MCI (odds ratio = 0.623, 95% confidence interval = 0.542-0.715, P < 0.001). The association between mushroom intake and MCI was mediated by interleukin-6 (IL-6) and hypersensitive C-reactive protein (hs-CRP), and the MoCA score was 12.76% and 47.59%, respectively. Conclusion: A high intake of mushrooms was associated with a low risk of MCI. Serum inflammatory factors including IL-6 and hs-CRP play a partial mediating role between mushroom intake and the MoCA score, and the underlying mechanism needs to be further explored.

14.
Food Funct ; 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38629388

ABSTRACT

A natural aging mouse model can exhibit physiological characteristics that closely resemble those of human aging. Through long-term observation, it reflects the occurrence and development of the aging process more accurately. Although numerous beneficial effects of royal jelly (RJ) have been extensively demonstrated in multiple experimental models, the effects of RJ on naturally aging mice have not yet been investigated. In this study, middle-aged male C57BL/6J mice were given RJ for 9 consecutive months to investigate its impact on the intestinal barrier function, gut microbiota, short-chain fatty acids (SCFAs) content and possible mechanisms. The results confirmed that RJ modulated serum lipids by reducing the levels of total cholesterol (TC), triglycerides (TG), and low-density lipoprotein cholesterol (LDL-C). Additionally, it protected the liver by increasing antioxidant enzyme levels while decreasing inflammatory cytokines TNF-α (by 51.97%), IL-6 (by 29.73%), and IL-1ß (by 43.89%). Furthermore, RJ inhibited the expression of cell cycle-dependent kinase inhibitors including p16, p21, and p53. Importantly, RJ ameliorated gut dysfunctions by inhibiting reduction of tight junction proteins and reducing inflammatory cytokines content in the colon. We also observed an alteration in gut microbiota characterized by an elevated ratio of Firmicutes to Bacteroides (F/B) along with increased abundance of beneficial bacteria, i.e., Lachnospiraceae NK4A136 and Akkermansia. Correlation analysis revealed positive associations between most bacterial genera and SCFAs production. Functional profiling of gut microbiota composition indicated that RJ intervention regulated amino acid metabolism, glycan biosynthesis, and cofactor/vitamin metabolism. Overall, our findings provide an effective dietary intervention strategy for modulating age-associated frailty through the modulation of the gut microbiota.

15.
Int J Biochem Cell Biol ; 171: 106570, 2024 Apr 07.
Article in English | MEDLINE | ID: mdl-38588888

ABSTRACT

Colon cancer has become a global public health challenge, and 5-Fluorouracil (5-FU) chemoresistance is a major obstacle in its treatment. Chemoresistance can be mediated by therapy-induced cellular senescence. This study intended to investigate mechanisms of INHBA (inhibin A) in 5-FU resistance mediated by cellular senescence in colon cancer. Bioinformatics analysis of INHBA expression in colon cancer tissues, survival analysis, and correlation analysis of cellular senescence markers were performed. The effects of INHBA on the biological characteristics and 5-FU resistance of colon cancer cells were examined through loss/gain-of-function and molecular assays. Finally, a xenograft mouse model was built to validate the mechanism of INHBA in vivo. INHBA was upregulated in colon cancer and was significantly positively correlated with cellular senescence markers uncoupling protein 2 (UCP-2), matrix metalloproteinase-1 (MMP-1), dense and erect panicle 1 (DEP1), and p21. Cellular senescence in colon cancer mediated 5-FU resistance. Downregulation of INHBA expression enhanced 5-FU sensitivity in colon cancer cells, inhibited cell proliferation, promoted apoptosis, increased the proportion of cells in G0/G1 phase, and it resulted in a lower proportion of senescent cells and lower levels of the cellular senescence markers interleukin 6 (IL-6) and interleukin 8 (IL-8). Analysis of whether to use the pathway inhibitor Verteporfin proved that INHBA facilitated colon cancer cell senescence and enhanced 5-FU chemoresistance via inactivation of Hippo signaling pathway, and consistent results were obtained in vivo. Collectively, INHBA conferred 5-FU chemoresistance mediated by cellular senescence in colon cancer cells through negative regulation of Hippo signaling.

16.
Phytother Res ; 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38558278

ABSTRACT

The development of Src homology-2 domain containing protein tyrosine phosphatase-2 (SHP2) inhibitors is a hot spot in the research and development of antitumor drugs, which may induce immunomodulatory effects in the tumor microenvironment and participate in anti-tumor immune responses. To date, several SHP2 inhibitors have made remarkable progress and entered clinical trials for the treatment of patients with advanced solid tumors. Multiple compounds derived from natural products have been proved to influence tumor cell proliferation, apoptosis, migration and other cellular functions, modulate cell cycle and immune cell activation by regulating the function of SHP2 and its mutants. However, there is a paucity of information about their diversity, biochemistry, and therapeutic potential of targeting SHP2 in tumors. This review will provide the structure, classification, inhibitory activities, experimental models, and antitumor effects of the natural products. Notably, this review summarizes recent advance in the efficacy and pharmacological mechanism of natural products targeting SHP2 in inhibiting the various signaling pathways that regulate different cancers and thus pave the way for further development of anticancer drugs targeting SHP2.

17.
Int J Cancer ; 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561936

ABSTRACT

Recombinant human granulocyte colony-stimulating factor (G-CSF) administration in patients with cancer and coronavirus disease (COVID-19) remains controversial. Concerns exist that it may worsen COVID-19 outcomes by triggering an inflammatory cytokine storm, despite its common use for managing chemotherapy-induced neutropenia (CIN) or febrile neutropenia post-chemotherapy. Here, we determined whether prophylactic or therapeutic G-CSF administration following chemotherapy exacerbates COVID-19 progression to severe/critical conditions in breast cancer patients with COVID-19. Between December 2022 and February 2023, all 503 enrolled breast cancer patients had concurrent COVID-19 and received G-CSF post-chemotherapy, with most being vaccinated pre-chemotherapy. We prospectively observed COVID-19-related adverse outcomes, conducted association analyses, and subsequently performed Mendelian randomization (MR) analyses to validate the causal effect of genetically predicted G-CSF or its associated granulocyte traits on COVID-19 adverse outcomes. Only 0.99% (5/503) of breast cancer patients experienced COVID-19-related hospitalization following prophylactic or therapeutic G-CSF administration after chemotherapy. No mortality or progression to severe/critical COVID-19 occurred after G-CSF administration. Notably, no significant associations were observed between the application, dosage, or response to G-CSF and COVID-19-related hospitalization (all p >.05). Similarly, the MR analyses showed no evidence of causality of genetically predicted G-CSF or related granulocyte traits on COVID-19-related hospitalization or COVID-19 severity (all p >.05). There is insufficient evidence to substantiate the notion that the prophylactic or therapeutic administration of G-CSF after chemotherapy for managing CIN in patients with breast cancer and COVID-19 would worsen COVID-19 outcomes, leading to severe or critical conditions, or even death, especially considering the context of COVID-19 vaccination.

18.
Adv Sci (Weinh) ; : e2401195, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38582501

ABSTRACT

Neutrophil extracellular traps (NETs) seriously impede diabetic wound healing. The disruption or scavenging of NETs using deoxyribonuclease (DNase) or cationic nanoparticles has been limited by liberating trapped bacteria, short half-life, or potential cytotoxicity. In this study, a positive correlation between the NETs level in diabetic wound exudation and the severity of wound inflammation in diabetic patients is established. Novel NETs scavenging bio-based hydrogel microspheres 'micro-cage', termed mPDA-PEI@GelMA, is engineered by integrating methylacrylyl gelatin (GelMA) hydrogel microspheres with cationic polyethyleneimine (PEI)-functionalized mesoporous polydopamine (mPDA). This unique 'micro-cage' construct is designed to non-contact scavenge of NETs between nanoparticles and the diabetic wound surface, minimizing biological toxicity and ensuring high biosafety. NETs are introduced into 'micro-cage' along with wound exudation, and cationic mPDA-PEI immobilizes them inside the 'micro-cage' through a strong binding affinity to the cfDNA web structure. The findings demonstrate that mPDA-PEI@GelMA effectively mitigates pro-inflammatory responses associated with diabetic wounds by scavenging NETs both in vivo and in vitro. This work introduces a novel nanoparticle non-contact NETs scavenging strategy to enhance diabetic wound healing processes, with potential benefits in clinical applications.

19.
Front Genet ; 15: 1377743, 2024.
Article in English | MEDLINE | ID: mdl-38680422

ABSTRACT

Background: Bibliometrics can trace general research trends in a particular field. Mucopolysaccharidoses (MPS), as a group of rare genetic diseases, seriously affect the quality of life of patients and their families. Scholars have devoted themselves to studying MPS's pathogenesis and treatment modalities and have published many papers. Therefore, we conducted a bibliometric and visual study of the top 100 most highly cited articles to provide researchers with an indication of the current state of research and potential directions in the field. Methods: The Web of Science Core Collection was searched for articles on MPS from 1 January 1900, to 8 November 2023, and the top 100 most cited articles were screened. The title, year of publication, institution, country, and first author of the articles were extracted and statistically analyzed using Microsoft Excel 2007. Keyword co-occurrence and collaborative networks were analyzed using VOSviewer 1.6.16. Results: A total of 9,273 articles were retrieved, and the top 100 most cited articles were filtered out. The articles were cited 18,790 times, with an annual average of 188 citations (122-507). Forty-two journals published these articles, with Molecular Genetics and Metabolism and Proceedings of the National Academy of Sciences of the United States being the most published journal (N = 8), followed by Pediatrics (N = 7), Blood (N = 6). The United States (N = 68), the UK (N = 25), and Germany (N = 20) were the top contributing countries. The Royal Manchester Children's Hospital (N = 20) and the University of North Carolina (N = 18) were the most contributing institutions. Muenzer J was the most prolific author (N = 14). Conclusion: We conducted a bibliometric and visual analysis of the top 100 cited articles in MPS. This study identifies the most influential articles currently available in the field of MPS, which provides a good basis for a better understanding of the disease and informs future research directions.

20.
Am J Cancer Res ; 14(3): 1353-1362, 2024.
Article in English | MEDLINE | ID: mdl-38590416

ABSTRACT

The challenge of methotrexate (MTX) resistance among low-risk gestational trophoblastic neoplasia (GTN) patients has always been prominent. Despite the International Federation of Gynaecology and Obstetrics (FIGO) score of 0-4 patients comprising the majority of low-risk GTN patients, a comprehensive exploration of the prevalence and risk factors associated with MTX resistance has been limited. Therefore, we aimed to identify associated risk factors in GTN patients with a FIGO score of 0-4. Between January 2005 and December 2020, 310 low-risk GTN patients received primary MTX chemotherapy in two hospitals, with 265 having a FIGO score of 0-4. In the FIGO 0-4 subgroup, 94 (35.5%) were resistant to MTX chemotherapy, and 34 (12.8%) needed multi-agent chemotherapy. Clinicopathologic diagnosis of postmolar choriocarcinoma (OR = 17.18, 95% CI: 4.64-63.70, P < 0.001) and higher pretreatment human chorionic gonadotropin concentration on a logarithmic scale (log-hCG concentration) (OR = 18.11, 95% CI: 3.72-88.15, P < 0.001) were identified as independent risk factors associated with MTX resistance according to multivariable logistic regression. The decision tree model and regression model were developed to predict the risk of MTX resistance in GTN patients with a FIGO score of 0-4. Evaluation of model discrimination, calibration and net benefit revealed the superiority of the decision tree model, which comprised clinicopathologic diagnosis and pretreatment hCG concentration. The patients in the high- and medium-risk groups of the decision tree model had a higher probability of MTX resistance. This study represents the investigation into MTX resistance in GTN patients with a FIGO score of 0-4 and disclosed a remission rate of approximately 65% with MTX chemotherapy. Higher pretreatment hCG concentration and clinicopathologic diagnosis of postmolar choriocarcinoma were independent risk factors associated with resistance to MTX chemotherapy. The decision tree model demonstrated enhanced predictive capabilities regarding the risk of MTX resistance and can serve as a valuable tool to guide the clinical treatment decisions for GTN patients with a FIGO score of 0-4.

SELECTION OF CITATIONS
SEARCH DETAIL
...