Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters










Publication year range
1.
Food Sci Nutr ; 12(2): 776-785, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38370081

ABSTRACT

Dietary habits and exercise play an important role in the well-being of human health. Currently, how long of drinking tea combined with exercise could efficiently ameliorate hepatic steatosis and obesity still needs to be investigated. Here, short-term and long-term green tea drinking combined with exercise were studied to improve hepatic steatosis and obesity in high-fat diet-induced (HF) mice. Our results showed that Yunkang 10 green tea (GT) combined with exercise (Ex) exhibited synergistic prevention effects on ameliorating hepatic steatosis and obesity. Especially, 22-week intervention with GT or Ex improved all symptoms of obesity, which indicated that long-term intervention exhibited profound preventive effects than the short term. Moreover, the combined intervention of 22 weeks inhibited the activation of NF-κB pathway and the expression of proinflammatory cytokines, which suggests that tea combined exercise may improve liver steatosis mainly by inhibiting inflammation. The key molecules for regulating lipid and glucose metabolism SCD1 were obviously downregulated, and GLU2 and PPARγ were significantly upregulated by GT and exercise in the liver of high-fat diet-induced mice. This study demonstrated that long-term intervention with GT and exercise effectively relieved hepatic steatosis and obesity complications by ameliorating hepatic inflammation, reducing lipid synthesis, and accelerating glucose transport.

2.
Microorganisms ; 11(9)2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37764032

ABSTRACT

Agriophara rhombata is a tea leaf moth that is considered one of the most destructive pests of Camellia sinensis (tea plant). Several recent studies have shown that many insects acquire part of the microbiome from their host and soil, but the pattern and diversity of their microbiome have not been clearly demonstrated. The present study aimed to investigate the bacterial and fungal communities present in the rhizospheric soil and leaf of tea plant compared to the gut of tea moth at different developmental stages (larvae, pupae, adult female and male) using Illumina MiSeq technology. Alpha diversity (Shannon index) showed higher (p < 0.05) bacterial and fungal diversity in soil samples than in leaf and tea moth larvae, pupae, and adult gut samples. However, during different developmental stages of tea moth, bacterial and fungal diversity did not differ (p > 0.05) between larvae, pupae, female, and male guts. Beta diversity also revealed more distinct bacterial and fungal communities in soil and leaf samples compared with tea moth gut samples, which had a more similar microbiome. Furthermore, Proteobacteria, Firmicutes, and Tenericutes were detected as the dominant bacterial phyla, while Ascomycota, Basidiomycota, and Mortierellomycota were the most abundant fungal phyla among all groups, but their relative abundance was comparatively higher (p < 0.05) in soil and leaf samples compared to tea moth gut samples. Similarly, Klebsiella, Streptophyta, and Enterococcus were the top three bacterial genera, while Candida, Aureobasidium, and Strelitziana were the top three fungal genera, and their relative abundance varied significantly (p < 0.05) among all groups. The KEGG analysis also revealed significantly higher (p < 0.5) enrichment of the functional pathways of bacterial communities in soil and leaf samples than in tea moth gut samples. Our study concluded that the bacterial and fungal communities of soil and tea leaves were more diverse and were significantly different from the tea moth gut microbiome at different developmental stages. Our findings contribute to our understanding of the gut microbiota of the tea moth and its potential application in the development of pest management techniques.

3.
Environ Res ; 237(Pt 1): 116925, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37598641

ABSTRACT

Understanding soil organic carbon (SOC), the largest carbon (C) pool of a terrestrial ecosystem, is essential for mitigating climate change. Currently, the spatial patterns and drivers of SOC in the plantations of tea, a perennial leaf crop, remain unclear. Therefore, the present study surveyed SOC across the main tea-producing areas of China, which is the largest tea producer in the world. We analyzed the soil samples from tea plantations under different scenarios, such as provinces, regions [southwest China (SW), south China (SC), south Yangtze (SY), and north Yangtze (NY)], climatic zones (temperate, subtropical, and tropical), and cultivars [large-leaf (LL) and middle or small-leaf (ML) cultivars]. Preliminary analysis revealed that most tea-producing areas (45%) had SOC content ranging from 10 to 20 g kg-1. The highest SOC was recorded for Yunnan among the various provinces, the SW tea-producing area among the four regions, the tropical region among the different climatic zones, and the areas with LL cultivars compared to those with ML cultivars. Further Pearson correlation analysis demonstrated significant associations between SOC and soil variables and random forest modeling (RF) identified that total nitrogen (TN) and available aluminum [Ava(Al)] of soil explained the maximum differences in SOC. Besides, a large indirect effect of geography (latitude and altitude) on SOC was detected through partial least squares path modeling (PLS-PM) analysis. Thus, the study revealed a high spatial heterogeneity in SOC across the major tea-producing areas of China. The findings also serve as a basis for planning fertilization strategies and C sequestration policies for tea plantations.

4.
EMBO J ; 42(16): e113258, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37409632

ABSTRACT

Mitochondrial biogenesis is the process of generating new mitochondria to maintain cellular homeostasis. Here, we report that viruses exploit mitochondrial biogenesis to antagonize innate antiviral immunity. We found that nuclear respiratory factor-1 (NRF1), a vital transcriptional factor involved in nuclear-mitochondrial interactions, is essential for RNA (VSV) or DNA (HSV-1) virus-induced mitochondrial biogenesis. NRF1 deficiency resulted in enhanced innate immunity, a diminished viral load, and morbidity in mice. Mechanistically, the inhibition of NRF1-mediated mitochondrial biogenesis aggravated virus-induced mitochondrial damage, promoted the release of mitochondrial DNA (mtDNA), increased the production of mitochondrial reactive oxygen species (mtROS), and activated the innate immune response. Notably, virus-activated kinase TBK1 phosphorylated NRF1 at Ser318 and thereby triggered the inactivation of the NRF1-TFAM axis during HSV-1 infection. A knock-in (KI) strategy that mimicked TBK1-NRF1 signaling revealed that interrupting the TBK1-NRF1 connection ablated mtDNA release and thereby attenuated the HSV-1-induced innate antiviral response. Our study reveals a previously unidentified antiviral mechanism that utilizes a NRF1-mediated negative feedback loop to modulate mitochondrial biogenesis and antagonize innate immune response.


Subject(s)
Antiviral Agents , Organelle Biogenesis , Animals , Mice , DNA, Mitochondrial/genetics , Immunity, Innate , Nuclear Respiratory Factor 1/genetics
5.
EMBO Rep ; 24(4): e54731, 2023 04 05.
Article in English | MEDLINE | ID: mdl-36847607

ABSTRACT

Ectopic lipid deposition and mitochondrial dysfunction are common etiologies of obesity and metabolic disorders. Excessive dietary uptake of saturated fatty acids (SFAs) causes mitochondrial dysfunction and metabolic disorders, while unsaturated fatty acids (UFAs) counterbalance these detrimental effects. It remains elusive how SFAs and UFAs differentially signal toward mitochondria for mitochondrial performance. We report here that saturated dietary fatty acids such as palmitic acid (PA), but not unsaturated oleic acid (OA), increase lysophosphatidylinositol (LPI) production to impact on the stability of the mitophagy receptor FUNDC1 and on mitochondrial quality. Mechanistically, PA shifts FUNDC1 from dimer to monomer via enhanced production of LPI. Monomeric FUNDC1 shows increased acetylation at K104 due to dissociation of HDAC3 and increased interaction with Tip60. Acetylated FUNDC1 can be further ubiquitinated by MARCH5 for proteasomal degradation. Conversely, OA antagonizes PA-induced accumulation of LPI, and FUNDC1 monomerization and degradation. A fructose-, palmitate-, and cholesterol-enriched (FPC) diet also affects FUNDC1 dimerization and promotes its degradation in a non-alcoholic steatohepatitis (NASH) mouse model. We thus uncover a signaling pathway that orchestrates lipid metabolism with mitochondrial quality.


Subject(s)
Fatty Acids , Mitophagy , Mice , Animals , Fatty Acids/metabolism , Dimerization , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Membrane Proteins/metabolism
6.
Elife ; 112022 08 01.
Article in English | MEDLINE | ID: mdl-35913115

ABSTRACT

DBC1 has been characterized as a key regulator of physiological and pathophysiological activities, such as DNA damage, senescence, and tumorigenesis. However, the mechanism by which the functional stability of DBC1 is regulated has yet to be elucidated. Here, we report that the ubiquitination-mediated degradation of DBC1 is regulated by the E3 ubiquitin ligase SIAH2 and deubiquitinase OTUD5 under hypoxic stress. Mechanistically, hypoxia promoted DBC1 to interact with SIAH2 but not OTUD5, resulting in the ubiquitination and subsequent degradation of DBC1 through the ubiquitin-proteasome pathway. SIAH2 knockout inhibited tumor cell proliferation and migration, which could be rescued by double knockout of SIAH2/CCAR2. Human tissue microarray analysis further revealed that the SIAH2/DBC1 axis was responsible for tumor progression under hypoxic stress. These findings define a key role of the hypoxia-mediated SIAH2-DBC1 pathway in the progression of human breast cancer and provide novel insights into the metastatic mechanism of breast cancer.


Subject(s)
Breast Neoplasms , Adaptor Proteins, Signal Transducing/metabolism , Breast/metabolism , Breast Neoplasms/pathology , Female , Humans , Hypoxia/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
7.
Cell Rep ; 40(7): 111195, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35977480

ABSTRACT

ATG9A is a highly conserved membrane protein required for autophagy initiation. It is trafficked from the trans-Golgi network (TGN) to the phagophore to act as a membrane source for autophagosome expansion. Here, we show that ATG9A is not just a passenger protein in the TGN but rather works in concert with GRASP55, a stacking factor for Golgi structure, to organize Golgi dynamics and integrity. Upon heat stress, the E3 ubiquitin ligase MARCH9 is promoted to ubiquitinate ATG9A in the form of K63 conjugation, and the nondegradable ubiquitinated ATG9A disperses from the Golgi apparatus to the cytoplasm more intensely, accompanied by inhibiting GRASP55 oligomerization, further resulting in Golgi fragmentation. Knockout of ATG9A or MARCH9 largely prevents Golgi fragmentation and protects Golgi functions under heat and other Golgi stresses. Our results reveal a noncanonical function of ATG9A for Golgi dynamics and suggest the pathway for sensing Golgi stress via the MARCH9/ATG9A axis.


Subject(s)
Autophagosomes , Golgi Apparatus , Autophagosomes/metabolism , Autophagy , Autophagy-Related Proteins/metabolism , Golgi Apparatus/metabolism , Protein Transport , Ubiquitin/metabolism , trans-Golgi Network/metabolism
8.
J Oncol ; 2022: 3691635, 2022.
Article in English | MEDLINE | ID: mdl-35498541

ABSTRACT

Background: Ovarian cancer (OC) is the most fatal gynecologic cancer. The branched-chain α-keto acid dehydrogenase kinase (BCKDK) plays an important role in many serious human diseases, including cancers. Its function in promoting cell proliferation and migration has been reported in various cancers. However, the biological role of BCKDK and its molecular mechanisms underlying OC initiation and progression are unclear. Methods: First, the expression level of BCKDK in OC cell lines or tissues was determined using tissue microarray- (TMA-) based immunohistochemistry or western blotting. Then, growth curve analysis, anchorage-independent cell transformation assays, wound healing assays, cell migration assays, and tumor xenografts were used to test whether BCKDK could promote cell transformation or metastasis. Finally, the signaling pathways involved in this process were investigated by western blotting or immunoprecipitation. Results: We found that the expression of BCKDK was upregulated in OC tissues and the high expression of BCKDK was correlated with an advanced pathological grade in patients. The ectopic overexpression of BCKDK promoted the proliferation and migration of OC cells, and the knockdown of BCKDK with shRNAs inhibited the proliferation and migration of OC ex vivo and in vivo. Moreover, BCKDK promoted OC proliferation and migration by activating MEK. Conclusions: Our results demonstrate that BCKDK promotes OC proliferation and migration by activating the MEK/ERK signaling pathway. Targeting the BCKDK-MEK axis may provide a new therapeutic strategy for treating patients with OC.

9.
Eur J Med Chem ; 238: 114402, 2022 Aug 05.
Article in English | MEDLINE | ID: mdl-35525080

ABSTRACT

In this work, a series of novel 1H-indole-2-carboxylic acid derivatives targeting 14-3-3η protein were designed and synthesized for treatment of liver cancer. After structural optimization for several rounds, C11 displayed a relatively better affinity with 14-3-3η, as well as the best inhibitory activities against several typical human liver cancer cell lines, including Bel-7402, SMMC-7721, SNU-387, Hep G2 and Hep 3B cells. Compound C11 also displayed best inhibitory activity against chemotherapy-resistant Bel-7402/5-Fu cells. Besides, C11 was rather safe against hERG and possessed moderate T1/2 and CL values in liver microsomes. In anti-proliferation, trans-well and cell apoptosis assays, C11 also showed its huge potential as a potent antitumor agent. Then, Western blot assay was conducted, following analyzed by molecular docking, the anti-proliferative mechanisms of this small-molecule inhibitor were revealed. Moreover, C11 was demonstrated to induce G1-S phase cell cycle arrest in liver cancer cells.


Subject(s)
Antineoplastic Agents , Liver Neoplasms , 14-3-3 Proteins , Antineoplastic Agents/chemistry , Apoptosis , Carboxylic Acids , Cell Line, Tumor , Cell Proliferation , Drug Design , Drug Screening Assays, Antitumor , Humans , Indoles , Liver Neoplasms/drug therapy , Molecular Docking Simulation , Structure-Activity Relationship
10.
Article in English | MEDLINE | ID: mdl-35388306

ABSTRACT

Background: Ginsenoside Rg1 is a major component of ginseng with antioxidative and antiaging effects, which is a traditional Chinese medicine. In this study, we investigated the potential spillover and mechanism of action of Rg1 on LiCl-driven hematopoietic stem cell aging. Results: Collect the purified Sca-1+ hematopoietic cells for differentiation ability detection and biochemical and molecular labeling. The experiment found that Rg1 plays an antiaging role in reversing the SA-ß-gal staining associated with LiCl-induced hematopoietic stem cell senescence, the increase in p53 and p21 proteins, and sustained DNA damage. At the same time, Rg1 protects hematopoietic cells from the reduced differentiation ability caused by LiCl. In addition, Rg1 increased the excessive inhibition of intracellular GSK-3ß protein, resulting in the maintenance of ß-catenin protein levels in hematopoietic cells after LiCl treatment. Then, the target gene level of ß-catenin can be maintained. Conclusions: Rg1 exerts the pharmacological effect of maintaining the activity of GSK-3ß in Sca-1+ hematopoietic cells, enhances the antioxidant potential of cells, improves the redox homeostasis, and thus protects cells from the decline in differentiation ability caused by aging. This study provides a potential therapeutic strategy to reduce stem cell pool failure caused by chronic oxidative damage to hematopoietic stem cells.

11.
Funct Integr Genomics ; 22(2): 251-260, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35211836

ABSTRACT

Albino tea plants generally have higher theanine, which causes their tea leaves to taste fresher, and they are an important mutant for the breeding of tea plant varieties. Earlier, we reported an albino germplasm, 'Menghai Huangye' (MHHY), from Yunnan Province and found that it has a lower chlorophyll content during the yellowing stage, but the mechanism underlying low chlorophyll and the yellowing phenotype is still unclear. In this study, the pigment contents of MHHY_May (yellowing, low chlorophyll), MHHY_July (regreening, normal chlorophyll), and YK10_May (green leaves, normal chlorophyll) were determined, and the results showed that the lower chlorophyll content might be an important reason for the formation of the yellowing phenotype of MHHY. Through transcriptome sequencing, we obtained 654 candidates for differentially expressed genes (DEGs), among which 4 genes were related to chlorophyll synthesis, 10 were photosynthesis-related, 34 were HSP family genes, and 19 were transcription factor genes. In addition, we analysed the transcription levels of the key candidate genes in MHHY_May and MHHY_July and found that they are consistent with the expression trends in MHHY_May and YK10_May, which further indicates that the candidate differential genes we identified are likely to be key candidate factors involved in the low chlorophyll content and yellowing of MHHY. In summary, our findings will assist in revealing the low chlorophyll content of MHHY and the formation mechanism of yellowing tea plants and will be applied to the selection and breeding of albino tea cultivars in the future.


Subject(s)
Camellia sinensis , Transcriptome , Camellia sinensis/genetics , China , Gene Expression Regulation, Plant , Plant Breeding , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Proteins/metabolism
12.
Front Plant Sci ; 12: 753131, 2021.
Article in English | MEDLINE | ID: mdl-34659321

ABSTRACT

Flavonoids, including flavonol derivatives, are the main astringent compounds of tea and are beneficial to human health. Many researches have been conducted to comprehensively identify and characterize the phenolic compounds in the tea plant. However, the biological function of tea flavonoids is not yet understood, especially those accumulated in floral organs. In this study, the metabolic characteristics of phenolic compounds in different developmental stages of flower buds and various parts of the tea flower were investigated by using metabolomic and transcriptomic analyses. Targeted metabolomic analysis revealed varying accumulation patterns of different phenolic polyphenol compounds during flowering; moreover, the content of flavonol compounds gradually increased as the flowers opened. Petals and stamens were the main sites of flavone and flavonol accumulation. Compared with those of fertile flowers, the content of certain flavonols, such as kaempferol derivatives, in anthers of hybrid sterile flowers was significantly low. Transcriptomic analysis revealed different expression patterns of genes in the same gene family in tea flowers. The CsFLSb gene was significantly increased during flowering and was highly expressed in anthers. Compared with fertile flowers, CsFLSb was significantly downregulated in sterile flowers. Further functional verification of the three CsFLS genes indicated that CsFLSb caused an increase in flavonol content in transgenic tobacco flowers and that CsFLSa acted in leaves. Taken together, this study highlighted the metabolic properties of phenolic compounds in tea flowers and determined how the three CsFLS genes have different functions in the vegetative and reproductive organs of tea plants. Furthermore, CsFLSb could regulated flavonol biosynthesis in tea flowers, thus influencing fertility. This research is of great significance for balancing the reproductive growth and vegetative growth of tea plants.

13.
Plant Sci ; 311: 110997, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34482909

ABSTRACT

Yunnan Province has a very wide diversity of tea germplasm resources. A variety of special tea germplasms with outstanding traits have been discovered, including tea germplasms with high anthocyanin content and low caffeine content. Albino tea cultivars generally have higher contents of theanine that contribute to the umami taste, and the quality of tea brewed from it is higher. The catechin index (CI), the ratio of dihydroxylated catechins (DIC) to trihydroxylated catechins (TRIC), is a crucial index of suitability for processing tea. In this study, the albino tea plant Menghai Huangye (MHHY) with yellow leaves was identified. Analysis of the biochemical components revealed that MHHY was enriched in theanine and the total catechins (TC) were lower than Yunkang 10 (YK10). In addition, the CI value of MHHY was extremely significantly higher than that of YK10. Metabolic profile of catechins and the related gene expression profile analysis found that the coordinated expression of the key branch genes F3'H and F3'5'Ha for the synthesis of DIC and TRIC in tea plant was closely related to the high CI and low TC of MHHY. Further analysis of the F3'H promoter showed that a 284-bp deletion mutation was present in the F3'H promoter of MHHY, containing the binding sites of the transcriptional repressor MYB4 involved in flavonoid metabolism, which might be an important reason for the up-regulated expression of F3'H in MHHY. Overall, this study provides a theoretical basis for understanding the characteristics of albino tea germplasm resources and efficiently utilizing high-CI tea germplasm resources.


Subject(s)
Camellia sinensis/anatomy & histology , Camellia sinensis/genetics , Catechin/analysis , Glutamates/analysis , Pigmentation/genetics , Catechin/genetics , Genes, Plant , Genetic Variation , Genotype , Glutamates/genetics , Phenotype , Transcriptome
14.
Front Plant Sci ; 12: 705285, 2021.
Article in English | MEDLINE | ID: mdl-34394160

ABSTRACT

High-quality genetic maps play important roles in QTL mapping and molecular marker-assisted breeding. Tea leaves are not only important vegetative organs but are also the organ for harvest with important economic value. However, the key genes and genetic mechanism of regulating leaf area have not been clarified. In this study, we performed whole-genome resequencing on "Jinxuan," "Yuncha 1" and their 96 F1 hybrid offspring. From the 1.84 Tb of original sequencing data, abundant genetic variation loci were identified, including 28,144,625 SNPs and 2,780,380 indels. By integrating the markers of a previously reported genetic map, a high-density genetic map consisting of 15 linkage groups including 8,956 high-quality SNPs was constructed. The total length of the genetic map is 1,490.81 cM, which shows good collinearity with the genome. A total of 25 representative markers (potential QTLs) related to leaf area were identified, and there were genes differentially expressed in large and small leaf samples near these markers. GWAS analysis further verified the reliability of QTL mapping. Thirty-one pairs of newly developed indel markers located near these potential QTLs showed high polymorphism and had good discrimination between large and small leaf tea plant samples. Our research will provide necessary support and new insights for tea plant genetic breeding, quantitative trait mapping and yield improvement.

15.
Hereditas ; 158(1): 26, 2021 Jul 16.
Article in English | MEDLINE | ID: mdl-34271985

ABSTRACT

BACKGROUND: miRNAs are a type of conserved, small RNA molecule that regulate gene expression and play an important role in the growth and development of plants. miRNAs are involved in seed germination, root development, shoot apical meristem maintenance, leaf development, and flower development by regulating various target genes. However, the role of miRNAs in the mechanism of tea plant flower sterility remains unclear. Therefore, we performed miRNA sequencing on the flowers of fertile male parents, female parents, and sterile offspring. RESULTS: A total of 55 known miRNAs and 90 unknown miRNAs were identified. In the infertile progeny, 37 miRNAs were differentially expressed; 18 were up-regulated and 19 were down-regulated. miR156, miR157, miR164, miR167, miR169, miR2111 and miR396 family members were down-regulated, and miR160, miR172 and miR319 family members were up-regulated. Moreover, we predicted that the 37 differentially expressed miRNAs target a total of 363 genes, which were enriched in 31 biological functions. We predicted that miR156 targets 142 genes, including ATD1A, SPL, ACA1, ACA2, CKB22 and MADS2. CONCLUSION: We detected a large number of differentially expressed miRNAs in the sterile tea plant flowers, and their target genes were involved in complex biological processes. Among these miRNAs, the down-regulation of miR156 may be one of the factor in the formation of sterile floral buds in tea plants.


Subject(s)
Camellia sinensis/genetics , MicroRNAs/genetics , Plant Infertility/genetics , Flowers/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant , RNA, Plant/genetics , Sequence Analysis, RNA
16.
J Hum Genet ; 66(12): 1153-1158, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34140613

ABSTRACT

Hereditary spherocytosis (HS) with hemolysis, splenomegaly, and jaundice as the main clinical symptoms varied in different population and SPTB mutated rate is common except for ANK1 in the Chinese population, whereas only a few studies have been reported. Here, 11 Chinese pediatric patients with newly SPTB mutations detected by targeted next generation sequencing technology were included and analyzed in our study. The characteristics of mutation separation were verified among family members by bidirectional Sanger sequencing. The detected 11 mutations were novel, all of which were heterozygotes, including five de novo mutations, five maternal mutations, and one paternal mutation. Meanwhile, the 11 different novel mutation sites distributed on and near the seven exons included four pathogenic sites and seven likely pathogenic sites. The detection of 11 novel mutation sites gene expanded the mutant spectrum of the SPTB gene, and provided corresponding clinical data, which laid a foundation for the subsequent studies on HS in Chinese population, especially in pediatric patients.


Subject(s)
Genetic Association Studies , Genetic Predisposition to Disease , Mutation , Spectrin/genetics , Spherocytosis, Hereditary/diagnosis , Spherocytosis, Hereditary/genetics , Alleles , DNA Mutational Analysis , Genetic Association Studies/methods , Genotype , High-Throughput Nucleotide Sequencing , Humans , Phenotype
17.
Elife ; 102021 05 04.
Article in English | MEDLINE | ID: mdl-33942716

ABSTRACT

Erythropoietin (EPO) drives erythropoiesis and is secreted mainly by the kidney upon hypoxic or anemic stress. The paucity of EPO production in renal EPO-producing cells (REPs) causes renal anemia, one of the most common complications of chronic nephropathies. Although mitochondrial dysfunction is commonly observed in several renal and hematopoietic disorders, the mechanism by which mitochondrial quality control impacts renal anemia remains elusive. In this study, we showed that FUNDC1, a mitophagy receptor, plays a critical role in EPO-driven erythropoiesis induced by stresses. Mechanistically, EPO production is impaired in REPs in Fundc1-/- mice upon stresses, and the impairment is caused by the accumulation of damaged mitochondria, which consequently leads to the elevation of the reactive oxygen species (ROS) level and triggers inflammatory responses by up-regulating proinflammatory cytokines. These inflammatory factors promote the myofibroblastic transformation of REPs, resulting in the reduction of EPO production. We therefore provide a link between aberrant mitophagy and deficient EPO generation in renal anemia. Our results also suggest that the mitochondrial quality control safeguards REPs under stresses, which may serve as a potential therapeutic strategy for the treatment of renal anemia.


Subject(s)
Anemia/prevention & control , Erythropoietin/metabolism , Gene Expression Regulation , Kidney Diseases/prevention & control , Membrane Proteins/genetics , Mitochondrial Proteins/genetics , Mitophagy/genetics , Animals , Erythropoiesis/genetics , Erythropoiesis/physiology , Erythropoietin/analysis , Erythropoietin/genetics , Kidney Diseases/classification , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Mitochondrial Proteins/metabolism , Mitophagy/physiology , Reactive Oxygen Species
18.
Hereditas ; 157(1): 39, 2020 Sep 08.
Article in English | MEDLINE | ID: mdl-32900387

ABSTRACT

BACKGROUND: The growth process of the tea plant (Camellia sinensis) includes vegetative growth and reproductive growth. The reproductive growth period is relatively long (approximately 1.5 years), during which a large number of nutrients are consumed, resulting in reduced tea yield and quality, accelerated aging, and shortened economic life of the tea plant. The formation of unisexual and sterile flowers can weaken the reproductive growth process of the tea plant. To further clarify the molecular mechanisms of pistil deletion in the tea plant, we investigated the transcriptome profiles in the pistil-deficient tea plant (CRQS), wild tea plant (WT), and cultivated tea plant (CT) by using RNA-Seq. RESULTS: A total of 3683 differentially expressed genes were observed between CRQS and WT flower buds, with 2064 upregulated and 1619 downregulated in the CRQS flower buds. These genes were mainly involved in the regulation of molecular function and biological processes. Ethylene synthesis-related ACC synthase genes were significantly upregulated and ACC oxidase genes were significantly downregulated. Further analysis revealed that one of the WIP transcription factors involved in ethylene synthesis was significantly upregulated. Moreover, AP1 and STK, genes related to flower development, were significantly upregulated and downregulated, respectively. CONCLUSIONS: The transcriptome analysis indicated that the formation of flower buds with pistil deletion is a complex biological process. Our study identified ethylene synthesis, transcription factor WIP, and A and D-class genes, which warrant further investigation to understand the cause of pistil deletion in flower bud formation.


Subject(s)
Camellia sinensis/genetics , Flowers/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant , Phenotype , Transcriptome , Computational Biology/methods , Flowers/growth & development , Gene Expression Profiling/methods , Gene Ontology
19.
Cancer Cell Int ; 20: 439, 2020.
Article in English | MEDLINE | ID: mdl-32943987

ABSTRACT

BACKGROUND: KLF5 is a member of the Kruppel-like factor, subfamily of zinc finger proteins that are involved in cancers. KLF5 functions as a transcription factor and regulates the diverse protein-coding genes (PCGs) in colorectal cancer (CRC). However, the long non-coding RNAs (lncRNAs) regulated by KLF5 in CRC are currently unknown. METHODS: In this study, we first designed a computational pipeline to determine the PCG and lncRNA targets of KLF5 in CRC. Then we analyzed the motif pattern of the binding regions for the lncRNA targets. The regulatory co-factors of KLF5 were then searched for through bioinformatics analysis. We also constructed a regulatory network for KLF5 and annotated its functions. Finally, one of the KLF5 lncRNA targets, SNHG12, was selected to further explore its expression pattern and functions in CRC. RESULTS: We were able to identify 19 lncRNA targets of KLF5 and found that the motifs of the lncRNA binding sites were GC-enriched. Next, we pinpointed the transcription factors AR and HSF1 as the regulatory co-factors of KLF5 through bioinformatics analysis. Then, through the analysis of the regulatory network, we found that KLF5 may be involved in DNA replication, DNA repair, and the cell cycle. Furthermore, in the cell cycle module, the SNHG12 up-regulating expression pattern was verified in the CRC cell lines and tissues, associating it to CRC invasion and distal metastasis. This indicates that SNHG12 may play a critical part in CRC tumorigenesis and progression. Additionally, expression of SNHG12 was found to be down-regulated in CRC cell lines when KLF5 expression was knocked-down by siRNA; and a strong correlation was observed between the expression levels of SNHG12 and KLF5, further alluding to their regulatory relationship. CONCLUSIONS: In conclusion, the network analysis of KLF5 targets indicates that SNHG12 may be a significant lncRNA in CRC.

20.
Stem Cells Int ; 2020: 2365814, 2020.
Article in English | MEDLINE | ID: mdl-32565825

ABSTRACT

OBJECTIVES: To demonstrate the effect of Ginsenoside Rg1 on the differentiation of human bone marrow-derived mesenchymal stem cells (hBM-MSCs). Subsequently, a rational mechanism for the detection of Rg1 which affects mesenchymal stem cell differentiation was explored. METHODS: Flow cytometry is used for cell identification. The differentiation ability of hBM-MSCs was studied by differentiation culture. SA-ß-gal staining is used to detect cell senescence levels. Western blot and immunofluorescence were used to determine protein expression levels. RT-qPCR is used to detect mRNA expression levels. RESULTS: Rg1 regulates the differentiation of hBM-MSCs. Differentiation culture analysis showed that Rg1 promoted cells to osteogenesis and chondrogenesis. Western blot results showed that Rg1 regulated the overactivation of the ß-catenin signaling pathway and significantly adjusted the phosphorylation of GSK-3ß. GSK-3ß inhibitor (Licl) significantly increased Rg1-induced phosphorylation of GSK-3ß, which in turn reduced Rg1-induced differentiation of hBM-MSCs. CONCLUSION: Ginsenoside Rg1 can reduce the excessive activation of the Wnt pathway in senescent cells by inhibiting the phosphorylation of GSK-3ß and regulate the mesenchymal stem cell differentiation ability.

SELECTION OF CITATIONS
SEARCH DETAIL
...