Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Nanobiomed Res ; 3(5)2023 May.
Article in English | MEDLINE | ID: mdl-37476397

ABSTRACT

Antibiotics are losing effectiveness as bacteria become resistant to conventional drugs. To find new alternatives, antimicrobial peptides (AMPs) are rationally designed with different lengths, charges, hydrophobicities (H), and hydrophobic moments (µH), containing only three types of amino acids: arginine, tryptophan, and valine. Six AMPs with low minimum inhibitory concentrations (MICs) and <25% toxicity to mammalian cells are selected for biophysical studies. Their secondary structures are determined using circular dichroism (CD), which finds that the % α-helicity of AMPs depends on composition of the lipid model membranes (LMMs): gram-negative (G(-)) inner membrane (IM) >gram-positive (G(+)) > Euk33 (eukaryotic with 33 mol% cholesterol). The two most effective peptides, E2-35 (16 amino acid [AA] residues) and E2-05 (22 AAs), are predominantly helical in G(-) IM and G(+) LMMs. AMP/membrane interactions such as membrane elasticity, chain order parameter, and location of the peptides in the membrane are investigated by low-angle and wide-angle X-ray diffuse scattering (XDS). It is found that headgroup location correlates with efficacy and toxicity. The membrane bending modulus KC displays nonmonotonic changes due to increasing concentrations of E2-35 and E2-05 in G(-) and G(+) LMMs, suggesting a bacterial killing mechanism where domain formation causes ion and water leakage.

SELECTION OF CITATIONS
SEARCH DETAIL