Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 11(26): 23741-23749, 2019 Jul 03.
Article in English | MEDLINE | ID: mdl-31199114

ABSTRACT

Orientated wrinkle patterns with controlled microarchitectures are highly attractive because of their potential and broad application in technologies ranging from flexible electronic devices to smart windows. Here, we demonstrate a macroscopic, geometry-dominated strategy to fabricate symmetric microwrinkles with precisely controllable pattern dimensions and orientations through a dynamic interfacial release process. The release-induced approach is based on the release of multilayer elastomer composites from polymeric sacrificial layers in solutions combined with crosslinking-induced contraction of the elastomer substrates. Crosslinking-induced contraction provides the driving force for developing and stabilizing surface wrinkle formation, whereas the polymeric sacrificial layer provides a mild and simultaneous release process to form orientated wrinkles through kinetic control of local strain development. The macroscopic shape of the composite controls release kinetics, hence strain history, leading to the generation of photonic reflective surfaces. Moreover, stable wrinkles fabricated from various materials including metals, ceramics, and carbons can be achieved. This versatile, mold-free, and cost-effective platform technology demonstrates how global strain distributions can be harnessed through kinetics to drive local pattern development.

2.
Nanoscale Res Lett ; 12(1): 362, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28532127

ABSTRACT

"Carbon-based material" has demonstrated a great potential on water purification due to its strong physical adsorption to organic pollutants in the water. Three-dimensional cubic ordered mesoporous carbon (CMK-8), one of the well-known ordered mesoporous carbons, was prepared by using nanocasting method with mesoporous silica (KIT-6) as the template. In this study, CMK-8 blended with Nafion polymer to form a free-standing mesoporous CMK-8-Nafion composite membrane. The synthesis of high crystallinity CMK-8 was characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). More than 80% methyl orange (MO) removal efficiency was observed under 254-nm UV irradiation after 120 min. Ninety-two percent recycling performance was remained after four recycling tests, which indicated a reliable servicing lifetime for the water purification. Furthermore, an additional layer of plasmonic silver nanoparticles (Ag NPs) was integrated into this CMK-8-Nafion membrane for higher pollutant removal efficiency, attributing from the generation of plasmon-resonance hot electrons from Ag NPs. A 4-in. CMK-8-Nafion composite membrane was also fabricated for the demonstration of potential large-scale utilization.

SELECTION OF CITATIONS
SEARCH DETAIL
...