Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 250
Filter
1.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 38(7): 830-835, 2024 Jul 15.
Article in Chinese | MEDLINE | ID: mdl-39013820

ABSTRACT

Objective: To investigate the effectiveness of the reverse traction device in the preoperative treatment of high-energy tibial plateau fractures. Methods: A retrospective study was conducted to analyze the clinical data of 33 patients with high-energy tibial plateau fractures who met the selection criteria between December 2020 and December 2023. All patients were treated by open reduction and internal fixation. According to the preoperative traction method, they were divided into the observation group (16 cases, treated with a reverse traction device on the day of admission) and the control group (17 cases, treated with heel traction on the day of admission). There was no significant difference in baseline data such as gender, age, body mass index, affected side, cause of injury, fracture Schatzker classification between the two groups ( P>0.05). Preoperative waiting time, preoperative related complications (nail channel loosening, nail channel oozing, nail channel infection, soft tissue necrosis, soft tissue infection, deep vein thrombosis of the lower extremity, etc.), operation time, and total hospitalization time were recorded and compared between the two groups. On the 4th day after traction, visual analogue scale (VAS) score was used to evaluate the pain relief of the patients, the swelling value of the affected limb was measured, and the Immobilization Comfort Questionnaire (ICQ) score was used to evaluate the perioperative hospital comfort of the patients. Results: Both groups of patients completed the operation successfully, and the operation time, total hospitalization time, and preoperative waiting time of the observation group were significantly less than those of the control group ( P<0.05). There was no preoperative related complications in the observation group; in the control group, 3 patients had nail channel loosening and oozing, and 2 cases had the deep vein thrombosis of the lower extremity; the difference in the incidence of complication between the two groups was significant ( P<0.05). On the 4th day after traction, the ICQ score, VAS score, and limb swelling value of the observation group were significantly better than those of the control group ( P<0.05). X-ray films showed that the tibial plateau fracture separation and lower limb alignment recovered after calcaneal traction in the control group, but not as obvious as in the observation group. The fracture gap in the observation group significantly reduced, the tibial plateau alignment was good, and the lateral angulation deformity was corrected. Conclusion: The use of reverse traction treatment in patients with high-energy tibial plateau fractures on admission can accelerate the swelling around the soft tissues to subside, reduce patients' pain, shorten the preoperative waiting time, improve the patients' preoperative quality of life, and contribute to the shortening of the operation time, with a good effectiveness.


Subject(s)
Fracture Fixation, Internal , Tibial Fractures , Traction , Humans , Traction/methods , Tibial Fractures/surgery , Fracture Fixation, Internal/methods , Fracture Fixation, Internal/instrumentation , Female , Male , Bone Plates , Treatment Outcome , Operative Time , Postoperative Complications , Tibial Plateau Fractures
2.
Plant Cell ; 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39038209

ABSTRACT

The level of methylesterification alters the functional properties of pectin, which is believed to influence plant growth and development. However, the mechanisms that regulate demethylesterification remain largely unexplored. Pectin with a high degree of methylesterification is produced in the Golgi apparatus and then transferred to the primary cell wall where it is partially demethylesterified by pectin methylesterases (PMEs). Here, we show that in Arabidopsis (Arabidopsis thaliana) seed mucilage, pectin demethylesterification is negatively regulated by the transcription factor ZINC FINGER FAMILY PROTEIN5 (ZAT5). Plants carrying null mutations in ZAT5 had increased PME activity, decreased pectin methylesterification, and produced seeds with a thinner mucilage layer. We provide evidence that ZAT5 binds to a TGATCA-motif and thereby negatively regulates methylesterification by reducing the expression of PME5, HIGHLY METHYL ESTERIFIED SEEDS (HMS)/PME6, PME12, and PME16. We also demonstrate that ZAT5 physically interacts with BEL1-LIKE HOMEODOMAIN2 (BLH2) and BLH4 transcription factors. BLH2 and BLH4 are known to modulate pectin demethylesterification by directly regulating PME58 expression. The ZAT5-BLH2/4 interaction provides a mechanism to control the degree of pectin methylesterification in seed coat mucilage by modifying each transcription factor's ability to regulate the expression of target genes encoding PMEs. Taken together, these findings reveal a transcriptional regulatory module comprising ZAT5, BLH2 and BLH4, that functions in modulating the de-methylesterification of homogalacturonan in seed coat mucilage.

3.
Anal Chem ; 96(29): 12084-12092, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39001802

ABSTRACT

Near-infrared (NIR) luminescent lanthanide materials hold great promise for bioanalysis, as they have anti-interference properties. The approach of efficient luminescence is sensitization through a reasonable chromophore to overcome the obstacle of the aqueous phase. The involvement of the surfactant motif is an innovative strategy to arrange the amphiphilic groups to be regularly distributed near the polymer to form a closed sensitized space. Herein, a lanthanide polymer (TCPP-PEI70K-FITC@Yb/SDBS) is designed in which the meso-tetra(4-carboxyphenyl)porphine (TCPP) ligand serves as both a sensitizer and photocatalytic switch. The surfactant sodium dodecyl benzenesulfonate (SDBS) wraps the photosensitive polymers to form a hydrophobic layer, which augments the light-harvesting ability and expedites its photocatalysis. TCPP-PEI70K-FITC@Yb/SDBS is subsequently applied as an amplified photocatalysis toolbox for universally regulating the generation of reactive oxygen species (ROS). Boosting 3,3',5,5'-tetramethylbenzidine (TMB) oxidation to produce blue products, a dual-mode biosensor is fabricated for improving the diagnosis of programmed death ligand-1-positive (PDL1) cancer exosomes. Exosomes were captured by Fe3O4 modified by the PDL1 aptamer, enabling replacement of alkaline phosphatase (ALP)-labeled multiple hybridized chains; then, the isolated ALP triggered a hydrolysis reaction to block the generation of oxTMB. Detection sensitivity improves by 1 order of magnitude through SDBS modulation, down to 104 particles/mL. The sensor performed well clinically in distinguishing cancer patients from healthy individuals, expanding physiological applications of near-infrared lanthanide luminescence.


Subject(s)
Lanthanoid Series Elements , Light , Polymers , Humans , Lanthanoid Series Elements/chemistry , Polymers/chemistry , Catalysis , Exosomes/chemistry , Exosomes/metabolism , Infrared Rays , Neoplasms/diagnosis , Photochemical Processes , Biosensing Techniques , Reactive Oxygen Species/analysis , Reactive Oxygen Species/metabolism
4.
Front Endocrinol (Lausanne) ; 15: 1379293, 2024.
Article in English | MEDLINE | ID: mdl-38978626

ABSTRACT

Background: Polycystic ovary syndrome (PCOS) is the most common reproductive-endocrine disorder with wide-ranging metabolic implications, including obesity. RNA editing, a post-transcriptional modification, can fine-tune protein function and introduce heterogeneity. However, the role of RNA editing and its impact on adipose tissue function in PCOS remain poorly understood. Methods: This study aimed to comprehensively analyze RNA-editing events in abdominal and subcutaneous adipose tissue of PCOS patients and healthy controls using high-throughput whole-genome sequencing (WGS) and RNA sequencing. Results: Our results revealed that PCOS patients exhibited more RNA-editing sites, with adenosine-to-inosine (A-to-I) editing being prevalent. The expression of ADAR genes, responsible for A-to-I editing, was also higher in PCOS. Aberrant RNA-editing sites in PCOS adipose tissue was enriched in immune responses, and interleukin-12 biosynthetic process. Tumor necrosis factor (TNF) signaling, nuclear factor kappa B (NF-κB) signaling, Notch signaling, terminal uridylyl transferase 4 (TUT4), hook microtubule tethering protein 3 (HOOK3), and forkhead box O1 (FOXO1) were identified to be of significant differences. Differentially expressed genes (DEGs) in PCOS adipose tissue were enriched in immune responses compared with controls, and the DEGs between subcutaneous and abdominal adipose tissue were also enriched in immune responses suggesting the important role of subcutaneous adipose tissue. Furthermore, we identified the correlations between RNA editing levels and RNA expression levels of specific genes, such as ataxia-telangiectasia mutated (ATM) and mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) in inflammation pathways and ATM, TUT4, and YTH N6-methyladenosine RNA-binding protein C2 (YTHDC2) in oocyte development pathway. Conclusions: These findings suggest that RNA-editing dysregulation in PCOS adipose tissue may contribute to inflammatory dysregulations. Understanding the interplay between RNA editing and adipose tissue function may unveil potential therapeutic targets for PCOS management. However, further research and validation are required to fully elucidate the molecular mechanisms underlying these associations.


Subject(s)
Adipose Tissue , Obesity , Polycystic Ovary Syndrome , RNA Editing , Humans , Polycystic Ovary Syndrome/genetics , Polycystic Ovary Syndrome/metabolism , Polycystic Ovary Syndrome/immunology , Polycystic Ovary Syndrome/pathology , Female , Obesity/genetics , Obesity/metabolism , Adult , Adipose Tissue/metabolism , Case-Control Studies , Whole Genome Sequencing
5.
BMC Plant Biol ; 24(1): 541, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38872084

ABSTRACT

BACKGROUND: The glandular trichomes of tobacco (Nicotiana tabacum) can efficiently produce secondary metabolites. They act as natural bioreactors, and their natural products function to protect plants against insect-pests and pathogens and are also components of industrial chemicals. To clarify the molecular mechanisms of tobacco glandular trichome development and secondary metabolic regulation, glandular trichomes and glandless trichomes, as well as other different developmental tissues, were used for RNA sequencing and analysis. RESULTS: By comparing glandless and glandular trichomes with other tissues, we obtained differentially expressed genes. They were obviously enriched in KEGG pathways, such as cutin, suberine, and wax biosynthesis, flavonoid and isoflavonoid biosynthesis, terpenoid biosynthesis, and plant-pathogen interaction. In particular, the expression levels of genes related to the terpenoid, flavonoid, and wax biosynthesis pathway mainly showed down-regulation in glandless trichomes, implying that they lack the capability to synthesize certain exudate compounds. Among the differentially expressed genes, 234 transcription factors were found, including AP2-ERFs, MYBs, bHLHs, WRKYs, Homeoboxes (HD-ZIP), and C2H2-ZFs. These transcription factor and genes that highly expressed in trichomes or specially expressed in GT or GLT. Following the overexpression of R2R3-MYB transcription factor Nitab4.5_0011760g0030.1 in tobacco, an increase in the number of branched glandular trichomes was observed. CONCLUSIONS: Our data provide comprehensive gene expression information at the transcriptional level and an understanding of the regulatory pathways involved in glandular trichome development and secondary metabolism.


Subject(s)
Gene Expression Profiling , Gene Expression Regulation, Plant , Nicotiana , Trichomes , Trichomes/genetics , Trichomes/metabolism , Trichomes/growth & development , Nicotiana/genetics , Nicotiana/metabolism , Nicotiana/growth & development , Transcriptome , Plant Proteins/genetics , Plant Proteins/metabolism , Genes, Plant , Transcription Factors/genetics , Transcription Factors/metabolism
6.
Phys Med Biol ; 69(15)2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38861995

ABSTRACT

We previously proposed range-guided adaptive proton therapy (RGAPT) that uses mid-range treatment beams as probing beams and intra-fractionated range measurements for online adaptation. In this work, we demonstrated experimental verification and reported the dosimetric accuracy for RGAPT. A STEEV phantom was used for the experiments, and a 3 × 3 × 3 cm3cube inside the phantom was assigned to be the treatment target. We simulated three online range shift scenarios: reference, overshoot, and undershoot, by placing upstream Lucite sheets, 4, 0, and 8 that corresponded to changes of 0, 6.8, and -6.8 mm, respectively, in water-equivalent path length. The reference treatment plan was to deliver single-field uniform target doses in pencil beam scanning mode and generated on the Eclipse treatment planning system. Different numbers of mid-range layers, including single, three, and five layers, were selected as probing beams to evaluate beam range (BR) measurement accuracy in positron emission tomography (PET). Online plans were modified to adapt to BR shifts and compensate for probing beam doses. In contrast, non-adaptive plans were also delivered and compared to adaptive plans by film measurements. The mid-range probing beams of three (5.55MU) and five layers (8.71MU) yielded accurate range shift measurements in 60 s of PET acquisition with uncertainty of 0.5 mm while the single-layer probing (1.65MU) was not sufficient for measurements. The adaptive plans achieved an average gamma (2%/2 mm) passing rate of 95%. In contrast, the non-adaptive plans only had an average passing rate of 69%. RGAPT planning and delivery are feasible and verified by the experiments. The probing beam delivery, range measurements, and adaptive planning and delivery added a small increase in treatment delivery workflow time but resulted in substantial dose improvement. The three-layer mid-range probing was most suitable considering the balance of high range measurement accuracy and the low number of probing beam layers.


Subject(s)
Phantoms, Imaging , Proton Therapy , Radiotherapy Planning, Computer-Assisted , Proton Therapy/methods , Radiotherapy Planning, Computer-Assisted/methods , Humans , Dose Fractionation, Radiation , Radiotherapy, Image-Guided/methods , Radiometry
7.
Phys Med Biol ; 69(15)2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38861997

ABSTRACT

Objective.Develop a prototype on-line positron emission tomography (PET) scanner and evaluate its capability of on-line imaging and intra-fractionated proton-induced radioactivity range measurement.Approach.Each detector consists of 32 × 32 array of 2 × 2 × 30 mm3Lutetium-Yttrium Oxyorthosilicate scintillators with single-scintillator-end readout through a 20 × 20 array of 3 × 3 mm2Silicon Photomultipliers. The PET can be configurated with a full-ring of 20 detectors for conventional PET imaging or a partial-ring of 18 detectors for on-line imaging and range measurement. All detector-level readout and processing electronics are attached to the backside of the system gantry and their output signals are transferred to a field-programable-gate-array based system electronics and data acquisition that can be placed 2 m away from the gantry. The PET imaging performance and radioactivity range measurement capability were evaluated by both the offline study that placed a radioactive source with known intensity and distribution within a phantom and the online study that irradiated a phantom with proton beams under different radiation and imaging conditions.Main results.The PET has 32 cm diameter and 6.5 cm axial length field-of-view (FOV), ∼2.3-5.0 mm spatial resolution within FOV, 3% sensitivity at the FOV center, 18%-30% energy resolution, and ∼9 ns coincidence time resolution. The offline study shows the PET can determine the shift of distal falloff edge position of a known radioactivity distribution with the accuracy of 0.3 ± 0.3 mm even without attenuation and scatter corrections, and online study shows the PET can measure the shift of proton-induced positron radioactive range with the accuracy of 0.6 ± 0.3 mm from the data acquired with a short-acquisition (60 s) and low-dose (5 MU) proton radiation to a human head phantom.Significance.This study demonstrated the capability of intra-fractionated PET imaging and radioactivity range measurement and will enable the investigation on the feasibility of intra-fractionated, range-shift compensated adaptive proton therapy.


Subject(s)
Phantoms, Imaging , Positron-Emission Tomography , Proton Therapy , Radiotherapy, Image-Guided , Proton Therapy/instrumentation , Proton Therapy/methods , Positron-Emission Tomography/instrumentation , Radiotherapy, Image-Guided/methods , Radiotherapy, Image-Guided/instrumentation , Humans , Dose Fractionation, Radiation
8.
Spectrochim Acta A Mol Biomol Spectrosc ; 317: 124393, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38723463

ABSTRACT

Herein, iron modified hydrogen-bonded organic framework (Fe-HOF) was successfully prepared by introducing the yellow-green fluorescent ligand 2,5-dihydroxyterephthalic acid into HOF and then modifying Fe3+. A simple turn-on fluorescence strategy is proposed for the detection of ascorbic acid (AA) based on Fe-HOF. Fe3+ could effectively quench fluorescence emission of HOF. In the presence of AA, Fe3+ was reduced to Fe2+, which led to the fluorescence recovery of HOF, thus realizing the fluorescence quantitative detection of AA. These fluorescence responsive behaviors of Fe-HOF ensure fluorescence assay of AA within 0.5 - 8 µM, along with a limit of detection (LOD) of 0.14 µM. The sensing platform could realize the rapid detection of ascorbic acid in vitamin C pills, tablets and beverages in the detection of ascorbic acid with good recoveries.

9.
Spectrochim Acta A Mol Biomol Spectrosc ; 317: 124423, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38759395

ABSTRACT

A simple and sensitive device for the detection of nitrite and nitrate in environmental waters was developed based on visible light gas-phase molecular absorption spectrometry. By integrating a detection cell (DC), semiconductor refrigeration temperature-controlling system (SRTCY), and nitrite reactor into a sequential injection analysis system, trace levels of nitrite and nitrate in complex matrices were successfully measured. A low energy-consuming light-emitting diode (violet, 400-405 nm) was coupled with a visible light-to-voltage converter (TSL257) to measure the gas-phase molecular absorption. To reduce the interference of water vapor, an SRTCY was used to condense the water vapor on-line before the gas-phase analyte entered the DC. The DC was radiatively heated by the SRTCY to avoid water vapor condensation in the light path. As a result, the obtained baseline noise reduced 3.75 times than that of without SRTCY. Under the optimized conditions, the device achieved limits of detection (3σ/k) of 0.055 and 0.36 mmol/L (0.77 and 5.04 mg N/L) for nitrite and nitrate, respectively, and the linear calibration ranges were 0.1-15 mmol/L (R2 = 0.9946) and 1-10 mmol/L (R2 = 0.9995), respectively. Precisions of 5.2 % and 9.0 % were achieved for ten successive determinations of 0.3 mmol/L nitrite and 1.0 mmol/L nitrate, and the analytical times for nitrite and nitrate determination were 5 and 13 min, respectively. This method was validated against standard methods and recovery tests, and it was applied to the measurement of nitrite and nitrate in environmental waters. Moreover, a device was designed to enable the field measurement of nitrite and nitrate in complex matrices.

10.
Bioresour Technol ; 404: 130910, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38821423

ABSTRACT

Reactive oxygen species (ROS) is produced in the composting, which effectively promote organic matter transformation and humification process, but the effect of ROS on greenhouse gas emissions in this process has not been understood. This study proposed and validated that ROS can effectively reduce greenhouse gas emissions intheprocessofcomposting. Compared with ordinary thermophilic composting (oTC), thermophilic composting (imTC) that was supplemented by iron mineral increased ROS production by 1.38 times, and significantly reduced greenhouse gas emissions by 45.12%. Microbial community analysis showed no significant difference in the abundance of microbes involved in greenhouse gas production between oTC and imTC. Further correlation analysis proved that ROS played a crucial role in influencing greenhouse gas emissions throughout the composting process, especially in the initial phase. These findings provide new strategies for managing livestock and poultry manure to mitigate climate change.


Subject(s)
Composting , Greenhouse Gases , Reactive Oxygen Species , Composting/methods , Reactive Oxygen Species/metabolism , Manure , Soil Microbiology , Animals , Soil/chemistry
11.
Bioengineering (Basel) ; 11(5)2024 May 03.
Article in English | MEDLINE | ID: mdl-38790322

ABSTRACT

Detection and segmentation of brain metastases (BMs) play a pivotal role in diagnosis, treatment planning, and follow-up evaluations for effective BM management. Given the rising prevalence of BM cases and its predominantly multiple onsets, automated segmentation is becoming necessary in stereotactic radiosurgery. It not only alleviates the clinician's manual workload and improves clinical workflow efficiency but also ensures treatment safety, ultimately improving patient care. Recent strides in machine learning, particularly in deep learning (DL), have revolutionized medical image segmentation, achieving state-of-the-art results. This review aims to analyze auto-segmentation strategies, characterize the utilized data, and assess the performance of cutting-edge BM segmentation methodologies. Additionally, we delve into the challenges confronting BM segmentation and share insights gleaned from our algorithmic and clinical implementation experiences.

12.
Chem Commun (Camb) ; 60(36): 4777-4780, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38597795

ABSTRACT

A cubic DNA nanocage probe is able to enter EVs derived from MDA-MB-231 cells and react with miRNA-10b. The probe-loaded EVs were employed to monitor the process of entry of miRNA-10b into MCF-10A cells, allowing visualization of EV-mediated intercellular communication of miRNA-10b between the cancer cells.


Subject(s)
Extracellular Vesicles , MicroRNAs , Humans , MicroRNAs/analysis , MicroRNAs/metabolism , Extracellular Vesicles/chemistry , Extracellular Vesicles/metabolism , Cell Line, Tumor , DNA Probes/chemistry , Nanostructures/chemistry
13.
Talanta ; 273: 125884, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38508128

ABSTRACT

A hydrodynamic-based microfluidic chip consisted of two function units that could not only separate tumor cells (TCs) from whole blood but also remove residual blood cells was designed. The separation of TCs was achieved by a straight contraction-expansion array (CEA) microchannel on the front end of the chip. The addition of contractive structure brought a micro-vortex like Dean vortex that promoted cell focusing in the channel, while when cells entered the dilated region, the wall-induced lift force generated by the channel wall gave cells a push away from the wall. As the wall-induced lift force is proportional to the third power of the cell diameter, TCs with larger diameter will have a larger lateral migration under the wall-induced lift force, realizing the separation of TCs from blood sample. Fluorescent particles with diameters of 19.3 µm and 4.5 µm were used to simulate TCs and red blood cells, respectively, to verify the separation capacity of the proposed CEA microchannel for particles with different diameter. And a separation efficiency 98.7% for 19.3 µm particles and a removal rate 96.2% for 4.5 µm particles was observed at sample flow rate of 10 µL min-1 and sheath flow rate of 190 µL min-1. In addition, a separation efficiency about 96.1% for MCF-7 cells (stained with DiI) and removal rates of 96.2% for red blood cells (RBCs) and 98.7% for white blood cells (WBCs) were also obtained under the same condition. However, on account of the large number of blood cells in the blood, there will be a large number of blood cells remained in the isolated TCs, so a purification unit based on hydrodynamic filtration (HDF) was added after the separation microchannel. The purification channel is a size-dictated cell filter that can remove residual blood cells but retain TCs, thus achieving the purification of TCs. Combined the CEA microchannel and the purifier, the microchip facilitates sorting of MCF-7 cells from whole blood with a separation rate about 95.3% and a removal rate over 99.99% for blood cells at a sample flow rate of 10 µL min-1, sheath flow rate of 190 µL min-1 and washing flow rate of 63 µL min-1.


Subject(s)
Microfluidic Analytical Techniques , Microfluidics , Humans , Hydrodynamics , Erythrocytes , MCF-7 Cells , Leukocytes , Cell Separation
14.
Front Endocrinol (Lausanne) ; 15: 1309993, 2024.
Article in English | MEDLINE | ID: mdl-38410698

ABSTRACT

Purpose: To compare the effects of recombinant FSH alfa (rFSH-alfa), rFSH-beta, highly purified human menopausal gonadotropin (HP-hMG) and urinary FSH (uFSH) in women with polycystic ovarian syndrome who have undertaken the GnRH antagonist protocol during IVF/ICSI treatment. Method: A single-center retrospective cohort study including women with PCOS who received the GnRH antagonist protocol from January 2019 to July 2022 was conducted. Patients were divided into rFSH-alfa group, HP-hMG group, uFSH group, and rFSH-beta group, and the number of oocytes retrieved, clinical pregnancy rate of the fresh cycle (primary outcomes), embryo quality, and severe OHSS rate (secondary outcomes) were compared. Results: No statistical differences were found among the four groups in fresh cycle clinical pregnancy rate (p=0.426), nor in the subgroup analyses. The HP-hMG group had a smaller number of oocytes retrieved and a higher high-quality D3 embryo rate than the three FSH groups (p<0.05). No statistical differences were found among the four groups in the severe OHSS rate (p=0.083). Conclusion: For women with PCOS undergoing the GnRH antagonist protocol, the clinical pregnancy rates of fresh IVF/ICSI-ET cycle are similar for all four types of Gn. With a lower risk of OHSS and a similar number of high-quality and available embryos, HP-hMG may have an advantage in the PCOS population.


Subject(s)
Polycystic Ovary Syndrome , Pregnancy , Humans , Female , Polycystic Ovary Syndrome/complications , Polycystic Ovary Syndrome/drug therapy , Gonadotropin-Releasing Hormone , Sperm Injections, Intracytoplasmic , Retrospective Studies , Ovulation Induction/methods , Gonadotropins/therapeutic use , Follicle Stimulating Hormone/therapeutic use
15.
ACS Nano ; 18(8): 6612-6622, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38359901

ABSTRACT

To perform multiplex profiling of single cells and eliminate the risk of potential sample loss caused by centrifugation, we developed a microfluidic flow cytometry and mass spectrometry system (µCytoMS) to evaluate the drug uptake and induced protein expression at the single cell level. It involves a microfluidic chip for the alignment and purification of single cells followed by detection with laser-induced fluorescence (LIF) and inductively coupled plasma mass spectrometry (ICP-MS). Biofunctionalized nanoprobes (BioNPs), conjugating ∼3000 6-FAM-Sgc8 aptamers on a single gold nanoparticle (AuNP) (Kd = 0.23 nM), were engineered to selectively bind with protein tyrosine kinase 7 (PTK7) on target cells. PTK7 expression induced by oxaliplatin (OXA) uptake was assayed with LIF, while ICP-MS measurement of 195Pt revealed OXA uptake of the drug in individual cells, which provided further in-depth information about the drug in relation to PTK7 expression. At an ultralow flow of ∼0.043 dyn/cm2 (20 µL/min), the chip facilitates the extremely fast focusing of BioNPs labeled single cells without the need for centrifugal purification. It ensures multiplex profiling of single cells at a throughput speed of 500 cells/min as compared to 40 cells/min in previous studies. Using a machine learning algorithm to initially profile drug uptake and marker expression in tumor cell lines, µCytoMS was able to perform in situ profiling of the PTK7 response to the OXA at single-cell resolution for tests done on clinical samples from 10 breast cancer patients. It offers great potential for multiplex single-cell phenotypic analysis and clinical diagnosis.


Subject(s)
Metal Nanoparticles , Microfluidics , Humans , Flow Cytometry , Gold , Biomarkers , Mass Spectrometry/methods , Cell Adhesion Molecules , Receptor Protein-Tyrosine Kinases
16.
Talanta ; 272: 125809, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38382300

ABSTRACT

The freshness of sea food has always been the focus of attention from consumers, and food-safety issues are in urgent need of efficient approaches. A HOF-based ratiometric fluorescence probe (HOF-FITC/Eu) featuring superior amine-response, offers the real-time and visual detection of seafood freshness. Via intermolecular hydrogen bond interaction to form hydrogen-bonded organic frameworks (HOFs), which serve as a structural basis for the conjugate loading of pH-sensitive fluorescein (5-FITC) and coordination doping of lanthanide Eu3+. Amine vapors stimulate the dual-wavelength (525 nm and 616 nm) characteristic fluorescence of HOF-FITC/Eu with an inverse trend, resulting in an increase of the ratio of I525 to I616 accompanied by a distinct color transition from red to green. Prepared HOF-FITC/Eu featuring sensitive red-green color change characteristics of amine response are readily dripped into composite films of filter paper through integrated smartphone and 254 nm UV lamp as mobile observation devices to on-site monitor the freshness of raw fish and shrimp samples. The intelligent food probe HOF-FITC/Eu opens a novel material assembly type for fluorescence sensing and a potential pathway for other functional materials in the field of investigational food.

17.
Small ; 20(30): e2309955, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38415899

ABSTRACT

Designing lanthanide luminescence lifetime sensors in the second near-infrared (NIR-II) window holds great potentials for physiological studies. However, the single lifetime signal is confined to one or two orders of magnitude of signal variation, which limits the sensitivity of lifetime probes. In this study, a lifetime cascade system, i.e., ZGO:Mn, Eu-DNA-1/TCPP-PEI70K@Yb-AptEpCAM, with a variety of signals (τm, τn, τµ, τm/τn and τm/τµ) is constructed for exosome identification using time-domain multiplexing. The sensitized ligand TCPP acts as both target-modulated switch and a bridge for connecting long lifetime ZGO:Mn, Eu-DNA-1 emitter to lanthanide Yb3+. This drives successive dual-path energy transfer and forms two D(donor)-A(acceptor) pairs. The lifetime variation is dominantly modulated by arranging TCPP as energy intermediate relay to covert milliseconds to nanoseconds to microseconds. It enables a broad lifetime range of six orders of magnitude. The presence of exosome specifically recognizes aptamers on TCPP-PEI70K@Yb-AptEpCAM to impede D-A pairs and reverse multiplexed response signals of the lifetime cascade system. The ratio lifetime signals τm/τn and τm/τµ achieve prominent exosome quantification and exosome type differentiation attributed to signal amplification. The cascade system relying on lifetime criteria can realize precise quantization and provide an effective strategy for subsequent physiological study.


Subject(s)
Exosomes , Lanthanoid Series Elements , Lanthanoid Series Elements/chemistry , Exosomes/metabolism , Exosomes/chemistry , Humans , Energy Transfer , Neoplasms/metabolism
18.
Crit Rev Anal Chem ; : 1-17, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38234139

ABSTRACT

Per- and polyfluoroalkyl substances (PFASs) have emerged as a prominent environmental pollutant in recent years, primarily due to their tendency to accumulate and magnify in both the environment and living organisms. The entry of PFASs into the environment can have detrimental effects on human health. Hence, it is crucial to actively monitor and detect the presence of PFASs. The current standard detection method of PFAS is the combination of chromatography and mass spectrometry. However, this requires expensive instruments, extra sample pretreatment steps, complicated operation and long analysis time. As a result, new methods that do not rely on chromatography and mass spectrometry have been developed and applied. These alternative methods mainly include optical and electrochemical sensor methods, which offer great potential in terms of real-time field detection, instrument miniaturization, shorter analysis time, and reduced detection cost. This review provides a summary of recent advancements in PFAS detection sensors. We categorize and explain the principles and mechanisms of these sensors, and compare their limits of detection and sensitivity. Finally, we discuss the future challenges and improvements needed for PFAS sensors, such as field application, commercialization, and other related issues.

19.
Med Phys ; 51(1): 18-30, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37856190

ABSTRACT

BACKGROUND: Online adaptive radiotherapy (ART) involves the development of adaptable treatment plans that consider patient anatomical data obtained right prior to treatment administration, facilitated by cone-beam computed tomography guided adaptive radiotherapy (CTgART) and magnetic resonance image-guided adaptive radiotherapy (MRgART). To ensure accuracy of these adaptive plans, it is crucial to conduct calculation-based checks and independent verification of volumetric dose distribution, as measurement-based checks are not practical within online workflows. However, the absence of comprehensive, efficient, and highly integrated commercial software for secondary dose verification can impede the time-sensitive nature of online ART procedures. PURPOSE: The main aim of this study is to introduce an efficient online quality assurance (QA) platform for online ART, and subsequently evaluate it on Ethos and Unity treatment delivery systems in our clinic. METHODS: To enhance efficiency and ensure compliance with safety standards in online ART, ART2Dose, a secondary dose verification software, has been developed and integrated into our online QA workflow. This implementation spans all online ART treatments at our institution. The ART2Dose infrastructure comprises four key components: an SQLite database, a dose calculation server, a report generator, and a web portal. Through this infrastructure, file transfer, dose calculation, report generation, and report approval/archival are seamlessly managed, minimizing the need for user input when exporting RT DICOM files and approving the generated QA report. ART2Dose was compared with Mobius3D in pre-clinical evaluations on secondary dose verification for 40 adaptive plans. Additionally, a retrospective investigation was conducted utilizing 1302 CTgART fractions from ten treatment sites and 1278 MRgART fractions from seven treatment sites to evaluate the practical accuracy and efficiency of ART2Dose in routine clinical use. RESULTS: With dedicated infrastructure and an integrated workflow, ART2Dose achieved gamma passing rates that were comparable to or higher than those of Mobius3D. Additionally, it significantly reduced the time required to complete pre-treatment checks by 3-4 min for each plan. In the retrospective analysis of clinical CTgART and MRgART fractions, ART2Dose demonstrated average gamma passing rates of 99.61 ± 0.83% and 97.75 ± 2.54%, respectively, using the 3%/2 mm criteria for region greater than 10% of prescription dose. The average calculation times for CTgART and MRgART were approximately 1 and 2 min, respectively. CONCLUSION: Overall, the streamlined implementation of ART2Dose notably enhances the online ART workflow, offering reliable and efficient online QA while reducing time pressure in the clinic and minimizing labor-intensive work.


Subject(s)
Radiotherapy Planning, Computer-Assisted , Radiotherapy, Intensity-Modulated , Humans , Radiotherapy Planning, Computer-Assisted/methods , Retrospective Studies , Software , Radiotherapy, Intensity-Modulated/methods , Tomography, X-Ray Computed , Radiotherapy Dosage
20.
J Hazard Mater ; 465: 133029, 2024 03 05.
Article in English | MEDLINE | ID: mdl-38042005

ABSTRACT

Tracking and imaging of nano-plastics are extremely challenging, especially in fresh biological samples. Here, we propose a new strategy in which polystyrene (PS) was doped with the europium chelate Eu (DBM)3bpy to quantify, track, and in situ image nano-plastics in fresh cucumber based on inherent metals using cryogenic laser ablation inductively coupled plasma mass spectrometry (cryo-LA-ICP-MS). The cryogenic conditions provide a stable condition for imaging fresh cucumber, suppressing the evaporation of water in fresh plants, and maintaining the original structure of plants with respect to room temperature imaging in LA-ICP-MS. The plants were cultivated in two types of nano-plastics solutions with low (50 mg/L) and high (200 mg/L) concentrations for 9 days. The results showed that nano-plastics mainly enrich the roots and have negative effects, which decrease the trace elements of Zn, Mn, and Cu in cucumber. Smaller PS particles are able to penetrate the plant more easily and inflict serious damage. Novel imaging method provides a novel insight into the tracking and imaging of nano-plastics in fresh plant samples. The results illustrated that nano-plastics deposition on plants has the potential to have direct ecological effects as well as consequences for potential health.


Subject(s)
Laser Therapy , Trace Elements , Microplastics , Plastics , Laser Therapy/methods , Trace Elements/analysis , Plants/chemistry , Mass Spectrometry/methods
SELECTION OF CITATIONS
SEARCH DETAIL