Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Protein Sci ; 32(9): e4741, 2023 09.
Article in English | MEDLINE | ID: mdl-37515422

ABSTRACT

Programmed death-1 (PD-1), an immune checkpoint receptor, is expressed on activated lymphocytes, macrophages, and some types of tumor cells. While PD-1+ cells have been implicated in outcomes of cancer immunity, autoimmunity, and chronic infections, the exact roles of these cells in various physiological and pathological processes remain elusive. Molecules that target and deplete PD-1+ cells would be instrumental in defining the roles unambiguously. Previously, an immunotoxin has been generated for the depletion of PD-1+ cells though its usage is impeded by its low production yield. Thus, a more practical molecular tool is desired to deplete PD-1+ cells and to examine functions of these cells. We designed and generated a novel anti-PD1 diphtheria immunotoxin, termed PD-1 DIT, targeting PD-1+ cells. PD-1 DIT is comprised of two single chain variable fragments (scFv) derived from an anti-PD-1 antibody, coupled with the catalytic and translocation domains of the diphtheria toxin. PD-1 DIT was produced using a yeast expression system that has been engineered to efficiently produce protein toxins. The yield of PD-1 DIT reached 1-2 mg/L culture, which is 10 times higher than the previously reported immunotoxin. Flow cytometry and confocal microscopy analyses confirmed that PD-1 DIT specifically binds to and enters PD-1+ cells. The binding avidities between PD-1 DIT and two PD-1+ cell lines are approximately 25 nM. Moreover, PD-1 DIT demonstrated potent cytotoxicity toward PD-1+ cells, with a half maximal effective concentration (EC50 ) value of 1 nM. In vivo experiments further showed that PD-1 DIT effectively depleted PD-1+ cells and enabled mice inoculated with PD-1+ tumor cells to survive throughout the study. Our findings using PD-1 DIT revealed the critical role of pancreatic PD-1+ T cells in the development of type-1 diabetes (T1D). Additionally, we observed that PD-1 DIT treatment ameliorated relapsing-remitting experimental autoimmune encephalomyelitis (RR-EAE), a mouse model of relapsing-remitting multiple sclerosis (RR-MS). Lastly, we did not observe significant hepatotoxicity in mice treated with PD-1 DIT, which had been reported for other immunotoxins derived from the diphtheria toxin. With its remarkable selective and potent cytotoxicity toward PD-1+ cells, coupled with its high production yield, PD-1 DIT emerges as a powerful biotechnological tool for elucidating the physiological roles of PD-1+ cells. Furthermore, the potential of PD-1 DIT to be developed into a novel therapeutic agent becomes evident.


Subject(s)
Immunotoxins , Mice , Animals , Immunotoxins/genetics , Immunotoxins/therapeutic use , Diphtheria Toxin/genetics , T-Lymphocytes , Cell Line
2.
Cells ; 11(19)2022 09 29.
Article in English | MEDLINE | ID: mdl-36231016

ABSTRACT

Mangrove ecosystems are vulnerable to rising sea levels as the plants are exposed to high salinity and tidal submergence. The ways in which these plants respond to varying salinities, immersion depths, and levels of light irradiation are poorly studied. To understand photosynthesis in response to salinity and submergence in mangroves acclimated to different tidal elevations, two-year-old seedlings of two native mangrove species, Kandelia obovata and Rhizophora stylosa, were treated at different salinity concentrations (0, 10, and 30 part per thousand, ppt) with and without immersion conditions under fifteen photosynthetic photon flux densities (PPFD µmol photon·m-2·s-1). The photosynthetic capacity and the chlorophyll fluorescence (ChlF) parameters of both species were measured. We found that under different PPFDs, electron transport rate (ETR) induction was much faster than photosynthetic rate (Pn) induction, and Pn was restricted by stomatal conductance (Gs). The Pn of the immersed K. obovata plants increased, indicating that this species is immersed-tolerant, whereas the Pn level of the R. stylosa plants is salt-tolerant with no immersion. All of the plants treated with 30 ppt salinity exhibited lower Pn but higher non-photochemical quenching (NPQ) and heat quenching (D) values, followed by increases in the excess energy and photoprotective effects. Since NPQ or D can be easily measured in the field, these values provide a useful ecological monitoring index that may provide a reference for mangrove restoration, habitat creation, and ecological monitoring.


Subject(s)
Rhizophoraceae , Chlorophyll/pharmacology , Ecosystem , Photosynthesis , Plant Leaves/physiology , Rhizophoraceae/physiology , Salinity
3.
J Control Release ; 349: 425-433, 2022 09.
Article in English | MEDLINE | ID: mdl-35820540

ABSTRACT

PD-1 immune checkpoint has been intensively investigated in pathogenesis and treatments for cancer and autoimmune diseases. Cells that express PD-1 (PD-1+ cells) draw ever-increasing attention in cancer and autoimmune disease research although the role of PD-1+ cells in the progression and treatments of these diseases remains largely ambiguous. One definite approach to elucidate their roles is to deplete these cells in disease settings and examine how the depletion impacts disease progression and treatments. To execute the depletion, we designed and generated the first depleting antibody (D-αPD-1) that specifically ablates PD-1+ cells. D-αPD-1 has the same variable domains as an anti-mouse PD-1 blocking antibody (RMP1-14). The constant domains of D-αPD-1 were derived from mouse IgG2a heavy and κ-light chain, respectively. D-αPD-1 was verified to bind with mouse PD-1 as well as mouse FcγRIV, an immuno-activating Fc receptor. The cell depletion effect of D-αPD-1 was confirmed in vivo using a PD-1+ cell transferring model. Since transferred PD-1+ cells, EL4 cells, are tumorigenic and EL4 tumors are lethal to host mice, the depleting effect of D-αPD-1 was also manifested by an absolute survival among the antibody-treated mice while groups receiving control treatments had median survival time of merely approximately 30 days. Furthermore, we found that D-αPD-1 leads to elimination of PD-1+ cells through antibody-dependent cell-mediate phagocytosis (ADCP) and complement-dependent cytotoxicity (CDC) mechanisms. These results, altogether, confirmed the specificity and effectiveness of D-αPD-1. The results also highlighted that D-αPD-1 is a robust tool to study PD-1+ cells in cancer and autoimmune diseases and a potential therapeutic for these diseases.


Subject(s)
Autoimmune Diseases , Programmed Cell Death 1 Receptor , Animals , Apoptosis , Immunoglobulin G , Mice , Receptors, Fc
4.
Front Immunol ; 12: 645699, 2021.
Article in English | MEDLINE | ID: mdl-33968036

ABSTRACT

Autoimmune diseases, such as multiple sclerosis and type-1 diabetes, are the outcomes of a failure of immune tolerance. Immune tolerance is sustained through interplays between two inter-dependent clusters of immune activities: immune stimulation and immune regulation. The mechanisms of immune regulation are exploited as therapeutic targets for the treatment of autoimmune diseases. One of these mechanisms is immune checkpoints (ICPs). The roles of ICPs in maintaining immune tolerance and hence suppressing autoimmunity were revealed in animal models and validated by the clinical successes of ICP-targeted therapeutics for autoimmune diseases. Recently, these roles were highlighted by the clinical discovery that the blockade of ICPs causes autoimmune disorders. Given the crucial roles of ICPs in immune tolerance, it is plausible to leverage ICPs as a group of therapeutic targets to restore immune tolerance and treat autoimmune diseases. In this review, we first summarize working mechanisms of ICPs, particularly those that have been utilized for therapeutic development. Then, we recount the agents and approaches that were developed to target ICPs and treat autoimmune disorders. These agents take forms of fusion proteins, antibodies, nucleic acids, and cells. We also review and discuss safety information for these therapeutics. We wrap up this review by providing prospects for the development of ICP-targeting therapeutics. In summary, the ever-increasing studies and results of ICP-targeting of therapeutics underscore their tremendous potential to become a powerful class of medicine for autoimmune diseases.


Subject(s)
Autoimmune Diseases/drug therapy , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Proteins/physiology , Animals , Antibodies, Monoclonal/therapeutic use , Autoimmune Diseases/etiology , Autoimmune Diseases/immunology , Genetic Therapy , Humans , Immune Checkpoint Inhibitors/adverse effects , Viral Proteins/physiology
5.
J Control Release ; 328: 653-664, 2020 12 10.
Article in English | MEDLINE | ID: mdl-32961248

ABSTRACT

Vaccines that induce cytotoxic T lymphocyte (CTL)-mediated immune responses constitute an important class of medical tools to fend off diseases like infections and malignancy. Epitope peptides, as a format of CTL vaccines, are being tested preclinically and clinically. To elicit CTL responses, epitope vaccines go through an epitope presentation pathway in dendritic cells (DCs) that has multiple bottleneck steps and hence is inefficient. Here, we report the development of a strategy to overcome one of these barriers, phagolysosomal escape in DCs. First, we furnished a previously established carrier-an immune-tolerant elastin-like polypeptide nanoparticle (iTEP NP)-with the peptides that are derived from the DNA polymerase of herpes simplex virus 1 (Pol peptides). Pol peptides were reported to facilitate phagolysosomal escape. In this study, while we found that Pol peptides promoted the CTL epitope presentation; we also discovered Pol peptides disrupted the formation of the iTEP NP. Thus, we engineered a series of new iTEPs and identified several iTEPs that could accommodate Pol peptides and maintain their NP structure at the same time. We next optimized one of these NPs so that its stability is responsive to its redox environment. This environment-responsive NP further strengthened the CTL epitope presentation and CTL responses. Lastly, we revealed how this NP and Pol peptides utilized biological cues of phagolysosomes to realize phagolysosomal escape and epitope release. In summary, we developed iTEP NP carriers with a new phagolysosomal escape function. These carriers, with their priorly incorporated functions, resolve three bottleneck issues in the CTL epitope presentation pathway: vaccine uptake, phagolysosomal escape, and epitope release.


Subject(s)
Nanoparticles , T-Lymphocytes, Cytotoxic , Elastin , Epitopes, T-Lymphocyte , Peptides
6.
Theranostics ; 10(16): 7403-7405, 2020.
Article in English | MEDLINE | ID: mdl-32642000

ABSTRACT

Immunity is the most critical and well-regulated protection to the body. Immunity is implicated in a wide range of diseases and serves as the foundation for immunotherapy. Immunotheranostics is the idea of improving immunotherapy through the organic integration of therapeutic, diagnostic, and screening technologies. This special issue collects reviews and opinions from prominent contributors in the immunotheranostic field who represent highly diversified research expertise. The immunotherapeutics discussed in this issue range from small molecules, peptides, antibodies, nanoparticles, and to cells. Discussions from the therapeutic development perspective are accompanied by opinions from the biology and medicine aspects. Further, there are reviews about different types of imaging technologies and their applications in immunotherapy. Lastly, one review raises attention to mass spectrometry for its utilization in the diagnosis and assessment for immunotherapy. In summary, this special issue is a showcase for what is happening in immunotheranostics. Moreover, it is also a justified wish list for what should and will happen in immunotheranostics.


Subject(s)
Immunotherapy/methods , Theranostic Nanomedicine/methods , Humans , Immunotherapy/trends , Review Literature as Topic , Theranostic Nanomedicine/trends
7.
Nat Biomed Eng ; 3(4): 292-305, 2019 04.
Article in English | MEDLINE | ID: mdl-30952980

ABSTRACT

Targeted suppression of autoimmune diseases without collateral suppression of normal immunity remains an elusive yet clinically important goal. Targeted blockade of programmed-cell-death-protein-1 (PD-1)-an immune checkpoint factor expressed by activated T cells and B cells-is an efficacious therapy for potentiating immune activation against tumours. Here we show that an immunotoxin consisting of an anti-PD-1 single-chain variable fragment, an albumin-binding domain and Pseudomonas exotoxin targeting PD-1-expressing cells, selectively recognizes and induces the killing of the cells. Administration of the immunotoxin to mouse models of autoimmune diabetes delays disease onset, and its administration in mice paralysed by experimental autoimmune encephalomyelitis ameliorates symptoms. In all mouse models, the immunotoxin reduced the numbers of PD-1-expressing cells, of total T cells and of cells of an autoreactive T-cell clone found in inflamed organs, while maintaining active adaptive immunity, as evidenced by full-strength immune responses to vaccinations. The targeted depletion of PD-1-expressing cells contingent to the preservation of adaptive immunity might be effective in the treatment of a wide range of autoimmune diseases.


Subject(s)
Autoimmune Diseases/immunology , Programmed Cell Death 1 Receptor/metabolism , ADP Ribose Transferases/metabolism , Adaptive Immunity , Amino Acid Sequence , Animals , Bacterial Toxins/metabolism , Diabetes Mellitus, Type 1/therapy , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/therapy , Exotoxins/metabolism , Female , Humans , Mice, Inbred C57BL , Mice, Inbred NOD , Programmed Cell Death 1 Receptor/chemistry , Protein Domains , Survival Analysis , Virulence Factors/metabolism , Pseudomonas aeruginosa Exotoxin A
8.
Biomaterials ; 182: 92-103, 2018 11.
Article in English | MEDLINE | ID: mdl-30107273

ABSTRACT

Dendritic cell (DC)-based cytotoxic T lymphocyte (CTL) epitope vaccines are effective to induce CTL responses but require complex ex vivo DC preparation and epitope-loading. To take advantage of DC-based epitope vaccines without involving the ex vivo procedures, we aimed to develop carriers to directly load CTL epitopes onto DCs in vivo. Here, we first engineered a carrier consisting of a hydrophilic polypeptide, immune-tolerant elastin-like polypeptide (iTEP) and a substrate peptide of matrix metalloproteinases-9 (sMMP). The iTEP was able to solubilize CTL epitopes. CTL epitopes were connected to the carrier, iTEP-sMMP, through sMMP so that the epitopes can be cleaved from the carrier by MMP-9. iTEP-sMMP was found to release its epitope payloads in the DC culture media, which contained MMP-9 released from DCs. iTEP-sMMP allowed for the direct loading of CTL epitopes onto the surface MHC class I complexes of DCs. Importantly, iTEP-sMMP resulted in greater epitope presentation by DCs both in vitro and in vivo than a control carrier that cannot directly load epitopes. iTEP-sMMP also induced 2-fold stronger immune responses than the control carrier. To further enhance the direct epitope-loading strategy, we furnished iTEP-sMMP with an albumin-binding domain (ABD) and found the new carrier, ABD-iTEP-sMMP, had greater lymph node (LN) accumulation than iTEP-sMMP. ABD-iTEP-sMMP also resulted in greater immune responses than iTEP-sMMP by 1.5-fold. Importantly, ABD-iTEP-sMMP-delivered CTL epitope vaccine induced stronger immune responses than free CTL epitope vaccine. Taken together, these carriers utilized two physiological features of DCs to realize direct epitope-loading in vivo: the accumulation of DCs in LNs and MMP-9 released from DCs. These carriers are a potential substitute for DC-based CTL epitope vaccines.


Subject(s)
Cancer Vaccines/administration & dosage , Cancer Vaccines/immunology , Dendritic Cells/immunology , Epitopes, T-Lymphocyte/administration & dosage , Epitopes, T-Lymphocyte/immunology , T-Lymphocytes, Cytotoxic/immunology , Animals , Dendritic Cells/chemistry , Drug Carriers/chemistry , Female , Histocompatibility Antigens Class I/chemistry , Histocompatibility Antigens Class I/immunology , Matrix Metalloproteinase 9/immunology , Mice, Inbred C57BL , Neoplasms/immunology , Neoplasms/prevention & control , Peptides/chemistry
9.
Theranostics ; 8(1): 223-236, 2018.
Article in English | MEDLINE | ID: mdl-29290804

ABSTRACT

Rationale: Albumin-binding carriers have been shown to target cytotoxic T lymphocyte (CTL) vaccines to lymph nodes (LNs) and improve the efficacy of the vaccines. However, it was not clear whether the improved efficacy is solely due to the LN targeting, which prompted this study. Methods: First, we generated a fusion protein consisting of an albumin-binding domain (ABD) and an immune-tolerant elastin-like polypeptide (iTEP). Then, we examined the binding between this fusion protein, termed ABD-iTEP, and mouse serum albumin (MSA). Next, we evaluated the accumulation of ABD-iTEP in LNs and dendritic cells (DCs) in the LNs. We also analyzed antigen presentation and in vitro T cell activation of vaccines that were delivered by ABD-iTEP and investigated possible underlying mechanisms of the presentation and activation results. Last, we measured CTL responses induced by ABD-iTEP-delivered vaccines in vivo. Results: ABD-iTEP bound with MSA strongly with an affinity of 1.41 nM. This albumin-binding carrier, ABD-iTEP, accumulated in LNs 3-fold more than iTEP, a control carrier that did not bind with albumin. ABD-iTEP also resulted in 4-fold more accumulation in DCs in the LNs than iTEP. Most importantly, ABD-iTEP drastically enhanced the antigen presentation of its vaccine payloads and the T cell activation induced by its payloads. The enhancement was dependent on the formation of the complex between MSA and ABD-iTEP. Meanwhile, the MSA/ABD-iTEP complex was found to have increased stability in acidic subcellular compartments and increased cytosolic accumulation in DCs, which might explain the enhanced vaccine presentation resulting from the complex. Finally, when ABD-iTEP was used to deliver CTL vaccines derived from both self- and non-self-antigens, it boosted the vaccine-induced responses by 2-fold in either case. Conclusion: ABD-iTEP not only targets vaccines to LNs but also promotes the presentation of the vaccines by DCs. Albumin-binding carriers have more than one mechanism to boost the efficacy of CTL vaccines.


Subject(s)
Dendritic Cells/metabolism , Lymph Nodes/metabolism , Peptides/immunology , T-Lymphocytes, Cytotoxic/metabolism , Vaccines/therapeutic use , Animals , Cell Line , Chromatography, Gel , Dendritic Cells/immunology , Endosomes/metabolism , Female , Lymphocyte Activation/physiology , Lysosomes/metabolism , Mice , Mice, Inbred C57BL , Microscopy, Fluorescence , Surface Plasmon Resonance , T-Lymphocytes, Cytotoxic/immunology , Vaccines/immunology
10.
Mol Pharm ; 14(10): 3312-3321, 2017 10 02.
Article in English | MEDLINE | ID: mdl-28789525

ABSTRACT

Cytotoxic T lymphocyte (CTL)-mediated immune responses are the primary defense mechanism against cancer and infection. CTL epitope peptides have been used as vaccines to boost CTL responses; however, the efficacy of these peptides is suboptimal. Under current vaccine formulation and delivery strategies, these vaccines are delivered into and processed inside antigen-presenting cells such as dendritic cells (DCs). However, the intracellular process is not efficient, which at least partially contributes to the suboptimal efficacy of the vaccines. Thus, we hypothesized that directly loading epitopes onto MHC class I complexes (MHC-Is) on the DC surface would significantly improve the efficacy of the epitopes because the direct loading bypasses inefficient intra-DC vaccine processing. To test the hypothesis, we designed an immune-tolerant elastin-like polypeptide (iTEP)-delivered CTL vaccine containing a metalloproteinase-9 (MMP-9)-sensitive peptide and an CTL epitope peptide. We found that the epitope was released from this MMP-sensitive vaccine through cleavage by DC-secreted MMP-9 outside of the DCs. The released epitopes were directly loaded onto MHC-Is on the DC surface. Ultimately, the MMP-sensitive vaccine strikingly increased epitope presentation by DCs by 7-fold and enhanced the epitope-specific CD8+ T-cell response by as high as 9.6-fold compared to the vaccine that was uncleavable by MMP. In summary, this novel direct-loading strategy drastically boosted vaccine efficacy. This study offered a new avenue to enhance CTL vaccines.


Subject(s)
Cell Membrane/immunology , Dendritic Cells/immunology , Elastin/immunology , Epitopes, T-Lymphocyte/chemistry , Histocompatibility Antigens Class I/immunology , T-Lymphocytes, Cytotoxic/immunology , Animals , Antigen Presentation/immunology , CD8-Positive T-Lymphocytes/immunology , Dendritic Cells/enzymology , Dendritic Cells/metabolism , Drug Delivery Systems , Elastin/chemistry , Elastin/genetics , Enzyme Assays , Epitopes, T-Lymphocyte/immunology , Epitopes, T-Lymphocyte/metabolism , Histocompatibility Antigens Class I/chemistry , Humans , Hybridomas , Matrix Metalloproteinase 9/metabolism , Mice , Peptides/chemistry , Peptides/immunology , RAW 264.7 Cells , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/genetics , Vaccines, Subunit/immunology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology
11.
Acta Pharmacol Sin ; 38(6): 914-923, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28414197

ABSTRACT

Cytotoxic T lymphocyte (CTL) epitope peptide-based vaccines are widely used in cancer and infectious disease therapy. We previously generated an immune-tolerant elastin-like polypeptides (iTEPs)-based carrier to deliver a peptide CTL vaccine and enhance the efficiency of the vaccine. To further optimize the vaccine carrier, we intended to potentiate its function by designing an iTEP-based carrier that was able to deliver adjuvant and a vaccine epitope as one molecule. Thus, we fused a 9-mer H100, a peptide derived from the high-mobility group box 1 protein (HMGB1) that could induce activation of dendritic cells (DCs), with an iTEP polymer to generate a new iTEP polymer named H100-iTEP. The H100-iTEP still kept the feature of reversible phase transition of iTEPs and should be able to be used as a polymer carrier to deliver peptide vaccines. The expression levels of CD80/CD86 on DCs were assessed using flow cytometry. The iTEP fusion-stimulated IL-6 secretion by DCs was measured with ELISA. Activation of antigen-specific CD8+ T cells induced by iTEP fusions was examined through a B3Z hybridoma cell activation assay. In vivo CTL activation promoted by iTEP fusions was detected by an IFN-γ-based ELISPOT assay. The iTEP fused with H100 could induce maturation of DCs in vitro as evidenced by increased CD80 and CD86 expression. The iTEP fusion also promoted activation of DCs by increasing secretion of a proinflammatory cytokine IL-6. The N-terminus or C-terminus fusion of H100 to iTEP had a similar effect and a reduced form of cysteine in iTEP fusions was required for DC stimulation. iTEP fusions potentiated a co-administrated CTL vaccine by increasing an antigen-specific CTL response in vitro and in vivo. When the H100-iTEP was fused to a CTL epitope to generate a one-molecule vaccine, this self-adjuvanted vaccine elicited a stronger antigen-specific CTL response than a vaccine adjuvanted by Incomplete Freund's Adjuvant. Thus, we have successfully generated a functional, one-molecule iTEP-based self-adjuvanted vaccine.


Subject(s)
Adjuvants, Immunologic , Elastin/immunology , Peptides/immunology , Protein Engineering , T-Lymphocytes, Cytotoxic/immunology , Vaccines, Subunit/immunology , Animals , Cell Line , Epitopes, T-Lymphocyte/immunology , Female , Immune Tolerance/immunology , Mice , Mice, Inbred C57BL
12.
Mol Pharm ; 14(5): 1494-1500, 2017 05 01.
Article in English | MEDLINE | ID: mdl-28343398

ABSTRACT

Cancer immune checkpoint therapy has achieved remarkable clinical successes in various cancers. However, current immune checkpoint inhibitors block the checkpoint of not only the immune cells that are important to cancer therapy but also the immune cells that are irrelevant to the therapy. Such an indiscriminate blockade limits the efficacy and causes the autoimmune toxicity of the therapy. It might be beneficial to use a carrier to target immune checkpoint inhibitors to cancer-reactive immune cells. Here, we explore a method to load the inhibitors into carriers. We used the anti-programmed death-1 antibody (αPD-1) as a model immune checkpoint inhibitor. First, we generated a recombinant single-chain variable fragment (scFv) of αPD-1. Then, we designed and generated a fusion protein consisting of the scFv and an amphiphilic immune-tolerant elastin-like polypeptide (iTEP). Because of the amphiphilic iTEP, the fusion was able to self-assemble into a nanoparticle (NP). The NP was proved to block the PD-1 immune checkpoint in vitro and in vivo. Particularly, the NP exacerbated diabetes development in nonobese diabetic mice as effectively as natural, intact αPD-1. In summary, we successfully expressed αPD-1 as a recombinant protein and linked αPD-1 to a NP, which lays a foundation to develop a delivery system to target αPD-1 to a subpopulation of immune cells.


Subject(s)
Antibodies/immunology , Apoptosis/immunology , Nanoparticles/chemistry , Animals , Cell Line, Tumor , Dynamic Light Scattering , Hydrodynamics , Mice
13.
Chem Commun (Camb) ; 52(45): 7314, 2016 Jun 07.
Article in English | MEDLINE | ID: mdl-27189350

ABSTRACT

Correction for 'Discovery of a (19)F MRI sensitive salinomycin derivative with high cytotoxicity towards cancer cells' by Qiuyan Shi et al., Chem. Commun., 2016, 52, 5136-5139.

14.
Biomaterials ; 93: 1-9, 2016 07.
Article in English | MEDLINE | ID: mdl-27060212

ABSTRACT

Cancer stem cell (CSC) inhibitors are a new category of investigational drugs to treat metastasis. Salinomycin (Sali) is one of most studied CSC inhibitors and has reached clinical tests. Several drug carriers have been developed to improve efficacy of Sali. However, Sali has not been shown to inhibit metastasis from orthotopic tumors, the gold standard for metastasis. To fill this gap, we developed an immune-tolerant, elastin-like polypeptide (iTEP)-based nanoparticle (iTEP-Sali-ABA NP) that released 4-(aminomethyl)benzaldehyde-modified Sali (Sali-ABA) under acidic conditions. We found that the NP increased the area under the curve (AUC) of Sali-ABA by 30-fold and the tumor accumulation by 3.4-fold. Furthermore, no metastasis was detected in any of the mice given the NP. However, all the mice died of primary tumor burdens. To overcome primary tumor growth and improve the overall survival, we applied a combination therapy consisting of the iTEP-Sali-ABA NP and iTEP NP-delivered paclitaxel. This therapy effectively retarded primary tumor growth, and most importantly, improved the overall survival. In conclusion, delivery of Sali-ABA by the NP, alone or in combination with paclitaxel, was more effective than free Sali-ABA in decreasing metastasis and increasing survival. This iTEP-Sali-ABA NP represents a novel and clinically promising therapy to combat metastasis.


Subject(s)
Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Elastin/chemistry , Immune Tolerance , Nanoparticles/chemistry , Peptides/chemistry , Pyrans/therapeutic use , Animals , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Benzaldehydes/chemical synthesis , Benzaldehydes/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Electrophoresis, Polyacrylamide Gel , Female , Humans , Mice, Inbred BALB C , Neoplasm Metastasis , Paclitaxel/pharmacology , Paclitaxel/therapeutic use , Pyrans/chemistry , Pyrans/pharmacokinetics , Pyrans/pharmacology , Tissue Distribution
15.
Theranostics ; 6(5): 666-78, 2016.
Article in English | MEDLINE | ID: mdl-27022414

ABSTRACT

Vaccine carriers have been shown to enhance cytotoxic T lymphocyte (CTL) epitope peptide vaccines by addressing intrinsic limitations of the vaccines. We have previously developed an immune-tolerant elastin-like polypeptide (iTEP)-based nanoparticle (NP) as an effective and unique CTL vaccine carrier. The NP is unique for its humoral immune tolerance, flexible structure, and ability to deliver CTL vaccines as polypeptide fusions. Here, we aimed to improve the NP by increasing its stability since we found it was not stable. We thus generated a more stable iTEP NP (ST-NP) and used it to deliver a CTL peptide vaccine, SIINFEKL. However, we surprisingly found that the ST-NP had a lower efficiency than the previously developed, marginally stable iTEP NP (MS-NP) in terms of promoting vaccine presentation and vaccine-induced CTL responses. On the other hand, dendritic cells (DCs) showed preferential uptake of the ST-NP but not the MS-NP. To develop an iTEP vaccine carrier that outperforms both the MS-NP and the ST-NP, we devised an iTEP NP that has a changeable stability responsive to a cytosolic, reductive environment, termed reductive environment-dependent NP or RED-NP. The RED-NP showed an intermediate ability to promote vaccine presentation and T cell responses in vitro between the MS-NP and the ST-NP. However, the RED-NP induced the strongest CTL responses in vivo among all three NPs. In conclusion, iTEP NPs that have a dynamically changeable stability are most effective to deliver and enhance CTL peptide vaccines. The work also demonstrated the versatile nature of iTEP vaccine carriers.


Subject(s)
Drug Carriers/administration & dosage , Nanoparticles/administration & dosage , T-Lymphocytes, Cytotoxic/immunology , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/immunology , Animals , Cell Line , Dendritic Cells/immunology , Drug Stability , Mice
16.
Chem Commun (Camb) ; 52(29): 5136-9, 2016 Apr 14.
Article in English | MEDLINE | ID: mdl-26997457

ABSTRACT

Salinomycin is a promising anti-cancer agent which selectively targets cancer stem cells. To improve its potency and selectivity, an analog library of salinomycin was generated by site-specific modification and CuAAc derivatization. Through a cytotoxicity analysis of the library, a fluorinated analog with high potency, selectivity, and (19)F MRI sensitivity was discovered as a novel theranostic agent.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Magnetic Resonance Imaging , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , Pyrans/chemistry , Pyrans/pharmacology , Animals , Apoptosis/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Crystallography, X-Ray , Halogenation , Humans , Mice , Models, Molecular
17.
J Control Release ; 208: 52-8, 2015 Jun 28.
Article in English | MEDLINE | ID: mdl-25637704

ABSTRACT

Drug delivery vehicles are often assessed for their ability to control primary tumor growth, but the outcome of cancer treatment depends on controlling or inhibiting metastasis. Therefore, we studied the efficacy of our genetically encoded polypeptide nanoparticle for doxorubicin delivery (CP-Dox) in the syngeneic metastatic murine models 4T1 and Lewis lung carcinoma. We found that our nanoparticle formulation increased the half-life, maximum tolerated dose, and tumor accumulation of doxorubicin. When drug treatment was combined with primary tumor resection, greater than 60% of the mice were cured in both the 4T1 and Lewis lung carcinoma models compared to 20% treated with free drug. Mechanistic studies suggest that metastasis inhibition and survival increase were achieved by preventing the dissemination of viable tumor cells from the primary tumor.


Subject(s)
Antibiotics, Antineoplastic/administration & dosage , Antibiotics, Antineoplastic/therapeutic use , Doxorubicin/administration & dosage , Doxorubicin/therapeutic use , Nanoparticles/chemistry , Neoplasm Metastasis/drug therapy , Peptides/chemistry , Animals , Antibiotics, Antineoplastic/pharmacokinetics , Body Weight/drug effects , Carcinoma/drug therapy , Carcinoma, Lewis Lung/drug therapy , Doxorubicin/pharmacokinetics , Drug Delivery Systems , Half-Life , Maximum Tolerated Dose , Mice , Mice, Inbred BALB C , Neoplasm Metastasis/pathology , Neoplasms, Experimental/drug therapy , Survival Analysis , Tissue Distribution
18.
AAPS J ; 17(1): 102-10, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25338741

ABSTRACT

As one targeting strategy of prodrug delivery, gene-directed enzyme prodrug therapy (GDEPT) promises to realize the targeting through its three key features in cancer therapy-cell-specific gene delivery and expression, controlled conversion of prodrugs to drugs in target cells, and expanded toxicity to the target cells' neighbors through bystander effects. After over 20 years of development, multiple GDEPT systems have advanced into clinical trials. However, no GDEPT product is currently marketed as a drug, suggesting that there are still barriers to overcome before GDEPT becomes a standard therapy. In this review, we first provide a general introduction of this prodrug targeting strategy. Then, we utilize the four most thoroughly studied systems to illustrate components, mechanisms, preclinical and clinical results, and further development directions of GDEPT. These four systems are herpes simplex virus thymidine kinase/ganciclovir, cytosine deaminase/5-fluorocytosine, cytochrome P450/oxazaphosphorines, and nitroreductase/CB1954 system. Later, we focus our discussion on bystander effects including local and distant bystander effects. Lastly, we discuss carriers that are used to deliver genes for GDEPT including virus carriers and non-virus carriers. Among these carriers, the stem cell-based gene delivery system represents one of the newest carriers under development, and may brought about a breakthrough to the gene delivery issue of GDEPT.


Subject(s)
Drug Delivery Systems , Genetic Therapy/methods , Prodrugs/administration & dosage , Animals , Bystander Effect , Drug Design , Enzymes/genetics , Gene Transfer Techniques , Humans , Stem Cells/cytology
19.
Mol Pharm ; 11(8): 2703-12, 2014 Aug 04.
Article in English | MEDLINE | ID: mdl-24960465

ABSTRACT

Salinomycin (Sali) has selective toxicity to cancer stem cells (CSCs), a subpopulation of cancer cells that have been recently linked with tumor multidrug resistance (MDR). To utilize its selective toxicity for cancer therapy, we sought to devise a nanoparticle (NP) carrier to deliver Sali to solid tumors through the enhanced permeability and retention effect and, hence, to increase its exposure to CSCs. First, hydrophobic Sali was conjugated to a hydrophilic, immune-tolerant, elastin-like polypeptide (iTEP); the amphiphilic iTEP-Sali conjugates self-assemble into NPs. Next, free Sali was encapsulated into the NPs alone or with two additives, N,N-dimethylhexylamine (DMHA) and α-tocopherol. The coencapsulation significantly improved the loading efficiency and release profile of Sali. The resulting NPs of the coencapsulation, termed as iTEP-Sali NP3s, have an in vitro release half-life of 4.1 h, four times longer than iTEP-Sali NP2s, the NPs that have encapsulated Sali only. Further, the NP3 formulation increases the plasma area under curve and the tumor accumulation of Sali by 10 and 2.4 times, respectively. Lastly, these improved pharmacokinetic and tumor accumulation profiles are consistent with a boost of CSC-elimination effect of Sali in vivo. In NP3-treated 4T1 orthotopic tumors, the mean CSC frequency is 55.62%, a significant reduction from the mean frequencies of untreated tumors, 75.00%, or free Sali-treated tumors, 64.32%. The CSC-elimination effect of the NP3 can further translate to a delay of tumor growth. Given the role of CSCs in driving tumor MDR and recurrence, it could be a promising strategy to add the NP3 to conventional cancer chemotherapies to prevent or reverse the MDR.


Subject(s)
Breast Neoplasms/drug therapy , Nanoparticles/chemistry , Neoplastic Stem Cells/drug effects , Pyrans/administration & dosage , Amines/chemistry , Animals , Drug Carriers , Drug Delivery Systems , Drug Resistance, Multiple/drug effects , Drug Resistance, Neoplasm/drug effects , Elastin/chemistry , Female , Mice , Mice, Inbred BALB C , Nanomedicine/methods , Neoplasm Transplantation , Pyrans/pharmacokinetics , Time Factors , Tissue Distribution , alpha-Tocopherol/chemistry
20.
BMC Genomics ; 13 Suppl 1: S9, 2012.
Article in English | MEDLINE | ID: mdl-22369214

ABSTRACT

BACKGROUND: Plant non-specific lipid transfer proteins (nsLTPs) are small and basic proteins. Recently, nsLTPs have been reported involved in many physiological functions such as mediating phospholipid transfer, participating in plant defence activity against bacterial and fungal pathogens, and enhancing cell wall extension in tobacco. However, the lipid transfer mechanism of nsLTPs is still unclear, and comprehensive information of nsLTPs is difficult to obtain. METHODS: In this study, we identified 595 nsLTPs from 121 different species and constructed an nsLTPs database--nsLTPDB--which comprises the sequence information, structures, relevant literatures, and biological data of all plant nsLTPs http://nsltpdb.life.nthu.edu.tw/. RESULTS: Meanwhile, bioinformatics and statistics methods were implemented to develop a classification method for nsLTPs based on the patterns of the eight highly-conserved cysteine residues, and to suggest strict Prosite-styled patterns for Type I and Type II nsLTPs. The pattern of Type I is C X2 V X5-7 C [V, L, I] × Y [L, A, V] X8-13 CC × G X12 D × [Q, K, R] X2 CXC X16-21 P X2 C X13-15C, and that of Type II is C X4 L X2 C X9-11 P [S, T] X2 CC X5 Q X2-4 C[L, F]C X2 [A, L, I] × [D, N] P X10-12 [K, R] X4-5 C X3-4 P X0-2 C. Moreover, we referred the Prosite-styled patterns to the experimental mutagenesis data that previously established by our group, and found that the residues with higher conservation played an important role in the structural stability or lipid binding ability of nsLTPs. CONCLUSIONS: Taken together, this research has suggested potential residues that might be essential to modulate the structural and functional properties of plant nsLTPs. Finally, we proposed some biologically important sites of the nsLTPs, which are described by using a new Prosite-styled pattern that we defined.


Subject(s)
Carrier Proteins/genetics , Computational Biology/methods , Databases, Genetic , Plant Proteins/genetics , Plants/genetics , Plants/metabolism , Models, Statistical
SELECTION OF CITATIONS
SEARCH DETAIL
...