Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
JAMA Neurol ; 81(2): 118-125, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38190136

ABSTRACT

Importance: The effect of argatroban in patients with acute ischemic stroke (AIS) and early neurological deterioration (END) is unknown. Objective: To assess the efficacy of argatroban for END in AIS. Design, Setting, and Participants: This open-label, blinded-end point, randomized clinical trial was conducted from April 4, 2020, through July 31, 2022. The date of final follow-up was October 31, 2022. This was a multicenter trial. Eligible patients were adults with AIS who experienced END, which was defined as an increase of 2 or more points on the National Institutes of Health Stroke Scale within 48 hours from symptom onset. Patients who withdrew consent, experienced duplicate randomization, or were lost to follow-up were excluded from the study. Interventions: Patients were randomly assigned to the argatroban group and control group within 48 hours of symptom onset. Both groups received standard therapy based on guidelines, including oral mono or dual antiplatelet therapy. The argatroban group received intravenous argatroban for 7 days (continuous infusion at a dose of 60 mg per day for 2 days, followed by 20 mg per day for 5 days) in addition to standard therapy. Main Outcome and Measure: The primary end point was good functional outcome at 90 days, defined as a modified Rankin Scale score of 0 to 3. Results: A total of 628 patients (mean [SD] age, 65 [11.9] years; 400 male [63.7%]) were included in this study (argatroban group, 314 [50%] and control group, 314 [50%]). Of these, 18 withdrew consent, 1 had duplicate randomization, and 8 were lost to follow-up. A total of 601 patients with stroke were included in the intention-to-treat analysis. Finally, 564 patients were included in the per-protocol analysis as 6 participants in the argatroban group and 31 participants in the control group did not follow the complete protocol. The number of patients with good functional outcome at 90 days was 240 (80.5%) in the argatroban group and 222 (73.3%) in the control group (risk difference, 7.2%; 95% CI, 0.6%-14.0%; risk ratio, 1.10; 95% CI, 1.01-1.20; P = .04). The proportion of symptomatic intracranial hemorrhage was 3 of 317 (0.9%) in the argatroban group and 2 of 272 (0.7%) in the control group (P = .78). Conclusions and Relevance: Among patients with AIS with END, treatment with argatroban and antiplatelet therapy resulted in a better functional outcome at 90 days. This trial provided evidence to support the use of argatroban in reducing disability for patients with END. Trial Registration: ClinicalTrials.gov Identifier: NCT04275180.


Subject(s)
Arginine/analogs & derivatives , Ischemic Stroke , Stroke , Sulfonamides , Adult , Humans , Male , Aged , Ischemic Stroke/drug therapy , Stroke/complications , Stroke/drug therapy , Pipecolic Acids/therapeutic use , Pipecolic Acids/adverse effects , Anticoagulants/therapeutic use
2.
Neuropharmacology ; 168: 108010, 2020 05 15.
Article in English | MEDLINE | ID: mdl-32061899

ABSTRACT

The ability to learn the reward-value and action-outcome contingencies in dynamic environment is critical for flexible adaptive behavior and development of effective pharmacological control of goal-directed behaviors represents an important challenge for improving the deficits in goal-directed behavior which may underlie seemingly disparate symptoms across psychiatric disorders. Adenosine A2A receptor (A2AR) is emerging as a novel neuromodulatory target for controlling goal-directed behavior for its unique neuromodulatory features: the ability to integrate dopamine and glutamate signaling, the "brake" constraint of various cognitive processes and the balanced control of goal-directed and habit actions. However, the contribution and circuit mechanisms of the striatopallidal A2ARs in nucleus accumbens (NAc) to control of goal-directed behavior remain to be determined. Here, we employed newly developed opto-A2AR and the focal A2AR knockdown strategies to demonstrate the causal role of NAc A2AR in control of goal-directed behavior. Furthermore, we dissected out multiple distinct behavioral mechanisms underlying which NAc A2ARs control goal-directed behavior: (i) NAc A2ARs preferentially control goal-directed behavior at the expense of habit formation. (ii) NAc A2ARs modify the animals' sensitivity to the value of the reward without affecting the action-outcome contingency. (iii) A2AR antagonist KW6002 promotes instrumental actions by invigorating motivation. (iv) NAc A2ARs facilitate Pavlovian incentive value transferring to instrumental action. (v) NAc A2ARs control goal-directed behavior probably not through NAc-VP pathway. These insights into the behavioral and circuit mechanisms for NAc A2AR control of goal-directed behavior facilitate translational potential for A2AR antagonists in reversal of deficits in goal-directed decision-making associated with multiple neuropsychiatric disorders.


Subject(s)
Corpus Striatum/metabolism , Globus Pallidus/metabolism , Goals , Motivation/physiology , Nucleus Accumbens/metabolism , Receptor, Adenosine A2A/metabolism , Adenosine A2 Receptor Antagonists/pharmacology , Animals , Conditioning, Classical/drug effects , Conditioning, Classical/physiology , Corpus Striatum/drug effects , Globus Pallidus/drug effects , Mice , Mice, Inbred C57BL , Mice, Transgenic , Motivation/drug effects , Nucleus Accumbens/drug effects , Purines/pharmacology , Receptor, Adenosine A2A/deficiency
3.
Cereb Cortex ; 30(3): 1366-1381, 2020 03 14.
Article in English | MEDLINE | ID: mdl-31690946

ABSTRACT

The striatopallidal pathway is specialized for control of motor and motivational behaviors, but its causal role in striatal control of instrumental learning remains undefined (partly due to the confounding motor effects). Here, we leveraged the transient and "time-locked" optogenetic manipulations with the reward delivery to minimize motor confounding effect, to better define the striatopallidal control of instrumental behaviors. Optogenetic (Arch) silencing of the striatopallidal pathway in the dorsomedial striatum (DMS) and dorsolateral striatum (DLS) promoted goal-directed and habitual behaviors, respectively, without affecting acquisition of instrumental behaviors, indicating striatopallidal pathway suppression of instrumental behaviors under physiological condition. Conversely, striatopallidal pathway activation mainly affected the acquisition of instrumental behaviors with the acquisition suppression achieved by either optogenetic (ChR2) or chemicogenetic (hM3q) activation, by strong (10 mW, but not weak 1 mW) optogenetic activation, by the time-locked (but not random) optogenetic activation with the reward and by the DMS (but not DLS) striatopallidal pathway. Lastly, striatopallidal pathway modulated instrumental behaviors through striatopallidal output projections into the external globus pallidus (GPe) since optogenetic activation of the striatopallidal pathway in the DMS and of the striatopallidal output projections in the GPe similarly suppressed goal-directed behavior. Thus, the striatopallidal pathway confers distinctive and inhibitory controls of animal's sensitivity to goal-directed valuation and acquisition of instrumental behaviors under normal and over-activation conditions, through the output projections into GPe.


Subject(s)
Conditioning, Operant/physiology , Corpus Striatum/physiology , Globus Pallidus/physiology , Goals , Neurons/physiology , Reward , Animals , Behavior, Animal/physiology , Female , Habits , Male , Mice, Transgenic , Neural Pathways/physiology , Optogenetics
4.
Front Mol Neurosci ; 9: 151, 2016.
Article in English | MEDLINE | ID: mdl-28082865

ABSTRACT

Striatal adenosine A2A receptors (A2ARs) modulate striatal synaptic plasticity and instrumental learning, possibly by functional interaction with the dopamine D2 receptors (D2Rs) and metabotropic glutamate receptors 5 (mGluR5) through receptor-receptor heterodimers, but in vivo evidence for these interactions is lacking. Using in situ proximity ligation assay (PLA), we studied the subregional distribution of the A2AR-D2R and A2AR-mGluR5 heterodimer complexes in the striatum and their adaptive changes over the random interval and random ratio training of instrumental learning. After confirming the specificity of the PLA detection of the A2AR-D2R heterodimers with the A2AR knockout and D2R knockout mice, we detected a heterogeneous distribution of the A2AR-D2R heterodimer complexes in the striatum, being more abundant in the dorsolateral than the dorsomedial striatum. Importantly, habit formation after the random interval training was associated with the increased formation of the A2AR-D2R heterodimer complexes, with prominant increase in the dorsomedial striatum. Conversely, goal-directed behavior after the random ratio schedule was not associated with the adaptive change in the A2AR-D2R heterodimer complexes. In contrast to the A2AR-D2R heterodimers, the A2AR-mGluR5 heterodimers showed neither subregional variation in the striatum nor adaptive changes over either the random ratio (RR) or random interval (RI) training of instrumental learning. These findings suggest that development of habit formation is associated with increased formation of the A2AR-D2R heterodimer protein complexes which may lead to reduced dependence on D2R signaling in the striatum.

5.
Neuropsychopharmacology ; 41(4): 1003-13, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26216520

ABSTRACT

The striatum has an essential role in neural control of instrumental behaviors by reinforcement learning. Adenosine A(2A) receptors (A(2A)Rs) are highly enriched in the striatopallidal neurons and are implicated in instrumental behavior control. However, the temporal importance of the A(2A)R signaling in relation to the reward and specific contributions of the striatopallidal A(2A)Rs in the dorsolateral striatum (DLS) and the dorsomedial striatum (DMS) to the control of instrumental learning are not defined. Here, we addressed temporal relationship and sufficiency of transient activation of optoA(2A)R signaling precisely at the time of the reward to the control of instrumental learning, using our newly developed rhodopsin-A2AR chimeras (optoA(2A)R). We demonstrated that transient light activation of optoA(2A)R signaling in the striatopallidal neurons in 'time-locked' manner with the reward delivery (but not random optoA(2A)R activation) was sufficient to change the animal's sensitivity to outcome devaluation without affecting the acquisition or extinction phases of instrumental learning. We further demonstrated that optogenetic activation of striatopallidal A(2A)R signaling in the DMS suppressed goal-directed behaviors, as focally genetic knockdown of striatopallidal A(2A)Rs in the DMS enhanced goal-directed behavior by the devaluation test. By contrast, optogenetic activation or focal AAV-Cre-mediated knockdown of striatopallidal A(2A)R in the DLS had relatively limited effects on instrumental learning. Thus, the striatopallidal A(2A)R signaling in the DMS exerts inhibitory and predominant control of goal-directed behavior by acting precisely at the time of reward, and may represent a therapeutic target to reverse abnormal habit formation that is associated with compulsive obsessive disorder and drug addiction.


Subject(s)
Conditioning, Operant/physiology , Corpus Striatum/physiology , Goals , Neurons/physiology , Receptor, Adenosine A2A/physiology , Reward , Animals , Behavior, Animal/physiology , Corpus Striatum/metabolism , Gene Knockdown Techniques , MAP Kinase Signaling System , Mice , Optogenetics , Receptor, Adenosine A2A/metabolism
6.
Invest Ophthalmol Vis Sci ; 56(13): 8108-19, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26720463

ABSTRACT

PURPOSE: We critically evaluated the role of the adenosine A1 receptor (A1R) in normal development of retinal vasculature and pathogenesis of retinopathy of prematurity (ROP) by using the A1R knockout (KO) mice and oxygen-induced retinopathy (OIR) model. METHODS: Mice deficient in A1Rs and their wild-type (WT) littermates were examined during normal postnatal development or after being subjected to 75% oxygen from postnatal day (P) 7 to P12 and to room air from P12 to P17 (OIR model of ROP). Retinal vascularization was examined by whole-mount fluorescence and cross-sectional hematoxylin-eosin staining. Cellular proliferation, astrocyte and microglial activation, and tip cell function were determined by isolectin staining and immunohistochemistry. Apoptosis was determined by TUNEL assay. RESULTS: Genetic deletion of the A1R did not affect normal retinal vascularization during postnatal development with indistinguishable three-layer vascularization patterns in retina between WT and A1R KO mice. In the OIR model, genetic deletion of the A1R resulted in stage-specific effects: reduced hyperoxia-induced retinal vaso-obliteration at P12, but reduced avascular area and attenuated hypoxia-induced intraretinal revascularization without affecting intravitreal neovascularization at P17 and reduced avascular areas in retina at P21. These distinct effects of A1Rs on OIR were associated with A1R control of apoptosis mainly in inner and outer nuclear layers at the vaso-obliterative phase (P12) and the growth of endothelium tip cells at the vasoproliferative phase (P17), without modification of cellular proliferation, astrocytic activation, and tissue inflammation. CONCLUSIONS: Adenosine A1 receptor activity is not required for normal postnatal development of retinal vasculature but selectively controls hyperoxia-induced vaso-obliteration and hypoxia-driven revascularization by distinct cellular mechanisms.


Subject(s)
Hyperoxia/physiopathology , Hypoxia/physiopathology , Receptor, Adenosine A1/physiology , Retinopathy of Prematurity/physiopathology , Animals , Cross-Sectional Studies , Disease Models, Animal , Humans , Infant, Newborn , Mice , Mice, Inbred C57BL , Mice, Knockout , Oxygen/adverse effects , Retinal Neovascularization/etiology , Retinal Neovascularization/pathology , Retinal Neovascularization/physiopathology , Retinal Vessels/physiology , Retinopathy of Prematurity/etiology , Retinopathy of Prematurity/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...