Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Colloid Interface Sci ; 652(Pt A): 866-877, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37633111

ABSTRACT

Efficient utilizing CO2 is crucial approaches in achieving carbon neutralization. One of the challenges lies in the in-situ conversion of low concentration CO2 found in waste gases. This study introduces a novel heterogeneous catalyst known as silver nanoparticles in porous N-heterocyclic carbene polymer (Ag@POP-NL-3). The catalyst is synthesized via a streamlined pre-coordination method. Ag@POP-NL-3 exhibits uniform distribution of silver nanoparticles, a porous structure and nitrogen activation groups. It demonstrates high efficiency and selectivity in absorbing and activating CO2 and enabling the conversion of low concentration CO2 (30 vol%) from lime kiln waste gas into cyclic carbonate under mild conditions. This catalytic system achieves both CO2 capture and resource utilization of CO2 simultaneously, effectively fixing low-concentration CO2 from waste gases into C2+ valuable chemicals. This approach elegantly addresses two goals in one solution.

2.
ChemSusChem ; 16(11): e202300170, 2023 Jun 09.
Article in English | MEDLINE | ID: mdl-36828776

ABSTRACT

Industrial waste gas is one of the major sources of atmospheric CO2 , yet the direct conversion of the low concentrations of CO2 in waste gases into high value-added chemicals have been a great challenge. Herein, a copper-based N-heterocyclic carbene porous polymer catalyst (Cu@NHC-1) for the direct conversion of low concentration CO2 into oxazolidinones was successfully fabricated via a facile copolymerization process followed by the complexation with Cu(OAc)2 . A continuous flow device was designed to deliver a continuous and stable carbon source for the reaction. Due to the triple synergistic effect of its porous structure, nitrogen activation sites and catalytic Cu center, Cu@NHC-1 shows highly efficient and selective adsorption, activation, and conversion of the low concentration CO2 (30 vol%). Its practical application potential is demonstrated by the ability to successfully convert the CO2 in lime kiln waste gas into oxazolidinones in satisfactory yields under mild conditions.


Subject(s)
Carbon Dioxide , Oxazolidinones , Carbon Dioxide/chemistry , Copper/chemistry , Polymers/chemistry , Porosity , Gases , Catalysis
SELECTION OF CITATIONS
SEARCH DETAIL