Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters










Publication year range
1.
Environ Toxicol Chem ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38695729

ABSTRACT

Persistent organic pollutants pose a great threat to amphibian populations, but information on the bioaccumulation of contaminants in amphibians remains scarce. To examine the tissue distribution and maternal transfer of organic halogenated pollutants (OHPs) in frogs, seven types of tissues from black-spotted frog (muscle, liver, kidney, stomach, intestine, heart, and egg) were collected from an e-waste-polluted area in South China. Among the seven frog tissues, median total OHP concentrations of 2.3 to 9.7 µg/g lipid weight were found (in 31 polychlorinated biphenyl [PCB] individuals and 15 polybrominated diphenyl ether [PBDE], dechlorane plus [syn-DP and anti-DP], bexabromobenzene [HBB], polybrominated biphenyl] PBB153 and -209], and decabromodiphenyl ethane [DBDPE] individuals). Sex-specific differences in contaminant concentration and compound compositions were observed among the frog tissues, and eggs had a significantly higher contaminant burden on the whole body of female frogs. In addition, a significant sex difference in the concentration ratios of other tissues to the liver was observed in most tissues except for muscle. These results suggest that egg production may involve the mobilization of other maternal tissues besides muscle, which resulted in the sex-specific distribution. Different parental tissues had similar maternal transfer mechanisms; factors other than lipophilicity (e.g., molecular size and proteinophilic characteristics) could influence the maternal transfer of OHPs in frogs. Environ Toxicol Chem 2024;00:1-12. © 2024 SETAC.

2.
Sensors (Basel) ; 24(4)2024 Feb 11.
Article in English | MEDLINE | ID: mdl-38400341

ABSTRACT

Orbit angular momentum (OAM) has been considered a new dimension for improving channel capacity in recent years. In this paper, a millimeter-wave broadband multi-mode waveguide traveling-wave antenna with OAM is proposed by innovatively utilizing the transmitted electromagnetic waves (EMWs) characteristic of substrate-integrated gap waveguides (SIGWs) to introduce phase delay, resulting in coupling to the radiate units with a phase jump. Nine "L"-shaped slot radiate elements are cut in a circular order at a certain angle on the SIGW to generate spin angular momentum (SAM) and OAM. To generate more OAM modes and match the antenna, four "Π"-shaped slot radiate units with a 90° relationship to each other are designed in this circular array. The simulation results show that the antenna operates at 28 GHz, with a -10 dB fractional bandwidth (FBW) = 35.7%, ranging from 25.50 to 35.85 GHz and a VSWR ≤ 1.5 dB from 28.60 to 32.0 GHz and 28.60 to 32.0 GHz. The antenna radiates a linear polarization (LP) mode with a gain of 9.3 dBi at 34.0~37.2 GHz, a l = 2 SAM-OAM (i.e., circular polarization OAM (CP-OAM)) mode with 8.04 dBi at 25.90~28.08 GHz, a l = 1 and l = 2 hybrid OAM mode with 5.7 dBi at 28.08~29.67 GHz, a SAM (i.e., left/right hand circular polarization (L/RHCP) mode with 4.6 dBi at 29.67~30.41 GHz, and a LP mode at 30.41~35.85 GHz. In addition, the waveguide transmits energy with a bandwidth ranging from 26.10 to 38.46 GHz. Within the in-band, only a quasi-TEM mode is transmitted with an energy transmission loss |S21| ≤ 2 dB.

3.
Chemosphere ; 352: 141386, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38316276

ABSTRACT

The growing number of infections caused by drug-resistant bacteria which arise from the overuse of antibiotics has severely affected the normal operation of human society. The high antibacterial activity of QAS makes it promising as an alternative to antibiotics, but it suffers from secondary pollution due to its non-degradation. Here we have synthesized a class of gemini quaternary ammonium salts (GQAS) with different carbon chain lengths containing ester groups by using facile methylation reaction. Quaternary ammonium groups contribute to insert negatively charged bacterial membranes, resulting in membrane damage and bacteria death. Compared with conventional single-chain QAS, except for the more efficient antibacterial efficiency attribute to the presence of the second carbon chain, GQAS with alterable antibacterial properties can minimize the possibility of bacterial resistance and reduce the accumulation of GQAS in the environment through the introduction of degradable ester groups. GQAS is completely superior to the commercial bactericide benzalkonium chloride (BAC) in both antibacterial activity and degrade performance, which can be used as a more environmentally friendly bactericide.


Subject(s)
Ammonium Compounds , Water Purification , Humans , Salts/pharmacology , Quaternary Ammonium Compounds/pharmacology , Anti-Bacterial Agents/pharmacology , Bacteria , Sterilization , Carbon , Esters
4.
Article in English | MEDLINE | ID: mdl-38083452

ABSTRACT

Body channel communication (BCC) which uses the human body as the communication channel has shown better energy efficiency and security compared with air channel communication. This article presents a simple, stable, and high transfer rate BCC technique using Manchester encoding, capacitive termination, and digital signal transfer operation. Manchester encoding is used to realize the spectrum migration of the baseband signal, and digital signal transmission simplifies system design and improves signal stability. The chip is fabricated in 65-nm technology. The experimental results show that the proposed transceiver achieved the highest data rates of 60 Mbps and the measured RX sensitivity is -64dBm. And the chip is also used to set up a multi-sensor nodes communication system to realize the data interaction between one hub and eight slave sensors utilizing the human body as the communication medium.


Subject(s)
Telemetry , Wearable Electronic Devices , Humans , Equipment Design , Telemetry/methods , Wireless Technology , Communication
5.
Protein Pept Lett ; 30(12): 1020-1029, 2023.
Article in English | MEDLINE | ID: mdl-38031269

ABSTRACT

BACKGROUND: Revealing the process and mechanism of colorectal cancer will facilitate the discovery of new biomarkers and contribute to the development of targeted drugs. OBJECTIVES: This study aimed to explore the potentially functional circRNA-miRNA-mRNA network in colorectal cancer (CRC), and further explore its mechanism. METHODS: Bioinformatics analysis was used to identify the differentially expressed circRNAs and mRNAs. Gene set enrichment analysis and KEGG pathways analysis were used to screen out the differentially expressed genes and observe crucial pathways that might have a strong association with CRC. Then, a network targeting circRNA, miRNA, and mRNA has been built by using the Cytoscape software. In addition, the expression of circRNA_0001573, miR-382-5p, and FZD3 was detected by qRT-PCR in CRC tissues and cells (SW480, HCT116, and HT29). RESULTS: Abnormal expressions of circRNAs and mRNAs were obtained by bioinformatics analysis and visualized by Volcano plot and Heatmap. A series of highly correlated pathways were enriched by KEGG analysis. The interaction network of circRNA_0001573/miR-382-5p/FZD3 axis was predicted. The expressions of circRNA_0001573 and FZD3 were highly upregulated and the miR- 382-5p expression level was decreased in CRC tissues and cell lines (SW480, HCT116, and HT29). CONCLUSION: Our study suggests that circRNA_0001573 and circRNA_0001573/miR-382-5p/FZD3 regulatory networks might provide a potential diagnosis for colorectal cancer.


Subject(s)
Colorectal Neoplasms , MicroRNAs , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Circular/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Biomarkers/metabolism , Colorectal Neoplasms/genetics
6.
J Mater Chem B ; 11(27): 6383-6392, 2023 07 12.
Article in English | MEDLINE | ID: mdl-37337793

ABSTRACT

Photocatalysis is considered as a promising technology to solve bacterial contamination, but the development of efficient photocatalysts with a strong generalizable light response remains a challenge. CdS has a suitable energy gap and good response to visible light, but the photogenerated carrier separation efficiency is low, and the photo-corrosion phenomenon leads to the significant release of Cd2+. In this paper, the CdS/C60 composite photocatalyst bactericide is synthesized via a simple one-step hydrothermal method. Testing via EIS, I-t, PL, and TRPL show that the C60 in the composite improves the hole-electron separation efficiency of CdS, resulting in a better photocatalytic performance. The complete inactivation of S. aureus and E. coli can be achieved within 40 min and 120 min, respectively, by dispersing 100 µg mL-1 of CdS/C60-2 in a diluted bacterial solution under simulated visible-light irradiation. Combined with ESR, SEM, fluorescence staining, DNA gel electrophoresis and ICP technology, it is believed that the high inactivation of bacteria is attributed to the ROS produced during the photocatalytic process, which destroy the integrity of the bacterial cell membrane and further destroy the DNA inside the bacteria, thus causing bacterial inactivation, rather than the inactivation being caused by Cd2+ toxicity.


Subject(s)
Escherichia coli , Staphylococcus aureus , Cadmium , Anti-Bacterial Agents/pharmacology , DNA
7.
Int J Biol Macromol ; 240: 124515, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37085066

ABSTRACT

Renewable yet biodegradable natural fiber (e.g., cellulose nanofiber (CNF)) reinforced bio-based polymers (e.g., polylactic acid (PLA)) are being applied for the manufacture of clean packaging products. The interface incompatibility between hydrophilic CNF and hydrophobic PLA still restricts the promotion of high-performance bio-based products. Herein, a polycondensate-coated CNF hybrid, wherein silane, aluminate, and titanate coupling agent monomers were in-situ polymerized onto the CNF surface via dehydration self-condensation, was designed and further employed as strengthening/toughening nanofillers for fabricating the CNF-reinforced PLA composite. Results showed that the polycondensate coatings could efficiently promote the dispersion of CNFs and enhance interfacial compatibility between CNFs and PLA. Attributing to the synergistic effect of polycondensate coatings and CNFs, a considerable improvement in processing, mechanical and thermal properties was obtained in resultant CNF/PLA composites. With adding 2.5 wt% polycondensate-coated CNFs, the tensile strength, Young's modulus, and tensile toughness of CNF-reinforced PLA composites was raised by about 27 %, 51 % and 68 %, respectively; also, such composite possessed greater elasticity and higher melt strength than pure PLA. This study provides a novel interface control strategy to fabricate low-cost yet high-performance PLA-based composites for sustainable packaging application.


Subject(s)
Cellulose , Nanofibers , Cellulose/chemistry , Nanofibers/chemistry , Polyesters/chemistry , Polymers/chemistry
8.
Bioconjug Chem ; 34(2): 302-325, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36748912

ABSTRACT

The overuse of antibiotics has led to the emergence of a large number of antibiotic-resistant genes in bacteria, and increasing evidence indicates that a fungicide with an antibacterial mechanism different from that of antibiotics is needed. Quaternary ammonium salts (QASs) are a biparental substance with good antibacterial properties that kills bacteria through simple electrostatic adsorption and insertion into cell membranes/altering of cell membrane permeability. Therefore, the probability of bacteria developing drug resistance is greatly reduced. In this review, we focus on the synthesis and application of single-chain QASs, double-chain QASs, heterocyclic QASs, and gemini QASs (GQASs). Some possible structure-function relationships of QASs are also summarized. As such, we hope this review will provide insight for researchers to explore more applications of QASs in the field of antimicrobials with the aim of developing systems for clinical applications.


Subject(s)
Anti-Infective Agents , Salts , Quaternary Ammonium Compounds/pharmacology , Anti-Bacterial Agents/pharmacology , Bacteria , Microbial Sensitivity Tests
9.
Eur J Med Res ; 28(1): 83, 2023 Feb 18.
Article in English | MEDLINE | ID: mdl-36805825

ABSTRACT

BACKGROUND: Benign prostatic hyperplasia (BPH) is a common disease in elderly males, and many kinds of minimally invasive procedures can be used for the treatment of BPH. However, various procedures have caused some controversies regarding clinical outcomes, so more studies are needed to validate these controversial topics. AIMS: This study aimed to explore differences of clinical efficacy, surgical features, and complications between transurethral resection of the prostate (TURP) and plasmakinetic enucleation of the prostate (PKEP) for BPH. METHODS: A total of eligible 850 cases of BPH underwent TURP (the TURP group, 320 cases) or PKEP (the PKEP group, 530 cases) in the urology department of our hospital from March 2015 to 2018 were involved in this study. Then, the baseline data, surgical characteristics, IPSS, QoL, PVR, Qmax, IIEF-5, and documented complications were compared between the two groups. RESULTS: The operative time, intraoperative irrigation volume, postoperative hemoglobin, decrease in hemoglobin, postoperative irrigation time and volume, catheterization time, and hospital stay of the PKEP group were significantly less than those of the TURP group (all P < 0.05). At 3 months, 1, 2, and 3 years after operation, no significant differences were observed in IPSS, QoL, PVR, but the results of Qmax and IIEF-5 in the PKEP group were significantly higher than those parameters in the TURP group (all P < 0.05). The incidences of massive blood loss, postoperative secondary bleeding, blood transfusion, capsular perforation, urinary tract irritation, bladder spasm, clot retention, urinary tract infection, transient incontinence, erectile dysfunction, and the incidences of II, III grade of Clavien-Dindo classification in the PKEP group were significantly lower than those of the TURP group (all P < 0.05). CONCLUSION: The clinical efficacy of PKEP is compared favorably with TURP during midterm follow-up. Given the merits such as less blood loss and hospital stay, lower complications, PKEP should be given a priority for BPH.


Subject(s)
Prostatic Hyperplasia , Transurethral Resection of Prostate , Aged , Male , Humans , Transurethral Resection of Prostate/adverse effects , Prostate/surgery , Prostatic Hyperplasia/surgery , Quality of Life , Treatment Outcome , Postoperative Hemorrhage
10.
PLoS Genet ; 18(12): e1010513, 2022 12.
Article in English | MEDLINE | ID: mdl-36477175

ABSTRACT

Walnut (Juglans) species are economically important hardwood trees cultivated worldwide for both edible nuts and high-quality wood. Broad-scale assessments of species diversity, evolutionary history, and domestication are needed to improve walnut breeding. In this study, we sequenced 309 walnut accessions from around the world, including 55 Juglans relatives, 98 wild Persian walnuts (J. regia), 70 J. regia landraces, and 86 J. regia cultivars. The phylogenetic tree indicated that J. regia samples (section Dioscaryon) were monophyletic within Juglans. The core areas of genetic diversity of J. regia germplasm were southwestern China and southern Asia near the Qinghai-Tibet Plateau and the Himalayas, and the uplift of the Himalayas was speculated to be the main factor leading to the current population dynamics of Persian walnut. The pattern of genomic variation in terms of nucleotide diversity, linkage disequilibrium, single nucleotide polymorphisms, and insertions/deletions revealed the domestication and selection footprints in Persian walnut. Selective sweep analysis, GWAS, and expression analysis further identified two transcription factors, JrbHLH and JrMYB6, that influence the thickness of the nut diaphragm as loci under selection during domestication. Our results elucidate the domestication and selection footprints in Persian walnuts and provide a valuable resource for the genomics-assisted breeding of this important crop.


Subject(s)
Juglans , Juglans/genetics , Phylogeny , Asia, Southern , China , Genomics
11.
BMC Plant Biol ; 22(1): 436, 2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36096735

ABSTRACT

BACKGROUND: Understanding the underlying genetic mechanisms that drive phenotypic variations is essential for enhancing the efficacy of crop improvement. Persian walnut (Juglans regia L.), which is grown extensively worldwide, is an important economic tree fruit due to its horticultural, medicinal, and material value. The quality of the walnut fruit is related to the selection of traits such as thinner shells, larger filling rates, and better taste, which is very important for breeding in China. The complex quantitative fruit-related traits are influenced by a variety of physiological and environmental factors, which can vary widely between walnut genotypes. RESULTS: For this study, a set of 101 Persian walnut accessions were re-sequenced, which generated a total of 906.2 Gb of Illumina sequence data with an average read depth of 13.8× for each accession. We performed the genome-wide association study (GWAS) using 10.9 Mb of high-quality single-nucleotide polymorphisms (SNPs) and 10 agronomic traits to explore the underlying genetic basis of the walnut fruit. Several candidate genes are proposed to be involved in walnut characteristics, including JrPXC1, JrWAKL8, JrGAMYB, and JrFRK1. Specifically, the JrPXC1 gene was confirmed to participate in the regulation of secondary wall cellulose thickening in the walnut shell. CONCLUSION: In addition to providing considerable available genetic resources for walnut trees, this study revealed the underlying genetic basis involved in important walnut agronomic traits, particularly shell thickness, as well as providing clues for the improvement of genetic breeding and domestication in other perennial economic crops.


Subject(s)
Juglans , Genome-Wide Association Study , Genotype , Juglans/genetics , Phenotype , Plant Breeding
12.
J Mater Chem B ; 10(23): 4405-4415, 2022 06 15.
Article in English | MEDLINE | ID: mdl-35587685

ABSTRACT

Molybdenum disulfide (MoS2) has been reported to possess photocatalytic bactericidal ability, but its efficiency is not high. In this paper, a water-soluble cationic conjugated polymer, poly(3-(4-methyl-3'-thiophenoxy))propyltrimethylammonium chloride (PThM), was designed to modify MoS2 and boost its antibacterial abilities. Another hydrophobic conjugated polymer, polythiophene (PTh), was synthesized and composited with MoS2, and this was compared with PThM/MoS2 from the perspective of composite effectiveness. Studies involving the photo-disinfection of Escherichia coli (E. coli) under visible-light irradiation (30 W) showed that the antibacterial efficiencies were in the following order: PThM/MoS2 > PTh/MoS2 > MoS2. The enhanced bactericidal activities of PThM/MoS2 and PTh/MoS2 were attributed to the conjugated polymers restraining the recombination of photogenerated carriers in MoS2, thereby increasing the generation of reactive oxygen species (ROS). PThM/MoS2 presented the best antibacterial efficiency because its cationic side-chains improved the solubility of the material and promoted contact between bacteria and the material. This work may provide some insights into the design of practical nano-antibacterial materials.


Subject(s)
Chlorides , Molybdenum , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Escherichia coli , Molybdenum/chemistry , Molybdenum/pharmacology , Polymers/chemistry , Polymers/pharmacology
14.
J Mater Chem B ; 10(17): 3285-3292, 2022 05 04.
Article in English | MEDLINE | ID: mdl-35377374

ABSTRACT

Photocatalytic covalent organic frameworks (COFs) are popular in the field of biomedical materials and also have potential as antimicrobial materials. Herein, a boron-based COF was used in antibacterial applications innovatively. The results of this study suggested that COF-1, the earliest boroxine COF, could produce a variety of reactive oxygen species (ROS) under visible light irradiation. In order to explore more applications of COF-1, antibacterial tests were carried out based on the above results. The test results showed that the material displayed an obvious bactericidal effect on Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) by releasing ROS under white light. According to the results of plate coating, all bacteria died after co-cultivation with COF-1 under white light for about 120 minutes. In a word, this study could provide a new idea for the application of boron-based COFs as multifunctional photocatalysts in future.


Subject(s)
Metal-Organic Frameworks , Anti-Bacterial Agents/pharmacology , Boron/pharmacology , Escherichia coli , Oxygen , Reactive Oxygen Species , Staphylococcus aureus
15.
Mol Ecol Resour ; 21(6): 2063-2076, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33817972

ABSTRACT

Manchurian walnut (Juglans mandshurica Maxim.) is a synonym of J. cathayensis, a diploid, vulnerable, temperate deciduous tree valued for its wood and nut. It is also valued as a rootstock for Juglans regia because of its reported tolerance of lesion nematode. Reference genomes are available for several Juglans species, our goal was to produce a de novo, chromosome-level assembly of the J. mandshurica genome. Here, we reported an improved assembly of J. mandshurica with a contig N50 size of 6.49 Mb and a scaffold N50 size of 36.1 Mb. The total genome size was 548 Mb encoding 29,032 protein coding genes which were annotated. The collinearity analysis showed that J. mandshurica and J. regia originated from a common ancestor, with both species undergoing two WGD events. A genomic comparison showed that J. mandshurica was missing 1657 genes found in J. regia, and J. mandshurica includes 2827 genes not found in of the J. regia genome. The J. mandshurica contained 1440 unique paralogues that were highly enriched for flavonoid biosynthesis, phenylpropanoid biosynthesis, and plant-pathogen interaction. Four gene families related to disease resistance notable contraction (rapidly evolving; LEA, WAK, PPR, and PR) in J. mandshurica compared to eight species. JmaPR10 and JmaPR8 contained three orthologous gene pairs with J. regia that were highly expressed in root bark. JmaPR10 is a strong candidate gene for lesion nematodes resistance in J. mandshurica. The J. mandshurica genome should be a useful resource for study of the evolution, breeding, and genetic variation in walnuts (Juglans).


Subject(s)
Disease Resistance/genetics , Evolution, Molecular , Genome, Plant , Juglans , Nematoda , Animals , China , Chromosomes, Plant , Juglans/genetics , Juglans/parasitology , Multigene Family , Nematoda/pathogenicity , Trees
16.
Sensors (Basel) ; 21(3)2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33535389

ABSTRACT

Deep learning technology has improved the performance of vision-based action recognition algorithms, but such methods require a large number of labeled training datasets, resulting in weak universality. To address this issue, this paper proposes a novel self-deployable ubiquitous action recognition framework that enables a self-motivated user to bootstrap and deploy action recognition services, called FOLLOWER. Our main idea is to build a "fingerprint" library of actions based on a small number of user-defined sample action data. Then, we use the matching method to complete action recognition. The key step is how to construct a suitable "fingerprint". Thus, a pose action normalized feature extraction method based on a three-dimensional pose sequence is designed. FOLLOWER is mainly composed of the guide process and follow the process. Guide process extracts pose action normalized feature and selects the inner class central feature to build a "fingerprint" library of actions. Follow process extracts the pose action normalized feature in the target video and uses the motion detection, action filtering, and adaptive weight offset template to identify the action in the video sequence. Finally, we collect an action video dataset with human pose annotation to research self-deployable action recognition and action recognition based on pose estimation. After experimenting on this dataset, the results show that FOLLOWER can effectively recognize the actions in the video sequence with recognition accuracy reaching 96.74%.

17.
Sensors (Basel) ; 21(3)2021 Feb 02.
Article in English | MEDLINE | ID: mdl-33540823

ABSTRACT

Indoor localization provides robust solutions in many applications, and Wi-Fi-based methods are considered some of the most promising means for optimizing indoor fingerprinting localization accuracy. However, Wi-Fi signals are vulnerable to environmental variations, resulting in data across different times being subjected to different distributions. To solve this problem, this paper proposes an across-time indoor localization solution based on channel state information (CSI) fingerprinting via multi-domain representations and transfer component analysis (TCA). We represent the format of CSI readings in multiple domains, extending the characterization of fine-grained information. TCA, a domain adaptation method in transfer learning, is applied to shorten the distribution distances among several CSI readings, which overcomes various CSI distribution problems at different time periods. Finally, we present a modified Bayesian model averaging approach to integrate the multi-domain outcomes and give the estimated positions. We conducted test-bed experiments in three scenarios on both personal computer (PC) and smartphone platforms in which the source and target fingerprinting data were collected across different days. The experimental results showed that our method outperforms state-of-the-art methods in localization accuracy.

18.
EBioMedicine ; 62: 103081, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33181462

ABSTRACT

BACKGROUND: Sepsis is a heterogenous syndrome and individualized management strategy is the key to successful treatment. Genome wide expression profiling has been utilized for identifying subclasses of sepsis, but the clinical utility of these subclasses was limited because of the classification instability, and the lack of a robust class prediction model with extensive external validation. The study aimed to develop a parsimonious class model for the prediction of class membership and validate the model for its prognostic and predictive capability in external datasets. METHODS: The Gene Expression Omnibus (GEO) and ArrayExpress databases were searched from inception to April 2020. Datasets containing whole blood gene expression profiling in adult sepsis patients were included. Autoencoder was used to extract representative features for k-means clustering. Genetic algorithms (GA) were employed to derive a parsimonious 5-gene class prediction model. The class model was then applied to external datasets (n = 780) to evaluate its prognostic and predictive performance. FINDINGS: A total of 12 datasets involving 1613 patients were included. Two classes were identified in the discovery cohort (n = 685). Class 1 was characterized by immunosuppression with higher mortality than class 2 (21.8% [70/321] vs. 12.1% [44/364]; p < 0.01 for Chi-square test). A 5-gene class model (C14orf159, AKNA, PILRA, STOM and USP4) was developed with GA. In external validation cohorts, the 5-gene class model (AUC: 0.707; 95% CI: 0.664 - 0.750) performed better in predicting mortality than sepsis response signature (SRS) endotypes (AUC: 0.610; 95% CI: 0.521 - 0.700), and performed equivalently to the APACHE II score (AUC: 0.681; 95% CI: 0.595 - 0.767). In the dataset E-MTAB-7581, the use of hydrocortisone was associated with increased risk of mortality (OR: 3.15 [1.13, 8.82]; p = 0.029) in class 2. The effect was not statistically significant in class 1 (OR: 1.88 [0.70, 5.09]; p = 0.211). INTERPRETATION: Our study identified two classes of sepsis that showed different mortality rates and responses to hydrocortisone therapy. Class 1 was characterized by immunosuppression with higher mortality rate than class 2. We further developed a 5-gene class model to predict class membership. FUNDING: The study was funded by the National Natural Science Foundation of China (Grant No. 81,901,929).


Subject(s)
Biomarkers , Cluster Analysis , Deep Learning , Disease Susceptibility , Sepsis/diagnosis , Sepsis/etiology , Algorithms , Computational Biology/methods , Female , Gene Expression Profiling , Humans , Male , Predictive Value of Tests , Prognosis , ROC Curve , Transcriptome
19.
J Transl Med ; 18(1): 381, 2020 10 08.
Article in English | MEDLINE | ID: mdl-33032623

ABSTRACT

BACKGROUND AND OBJECTIVES: Sepsis is a leading cause of mortality and morbidity in the intensive care unit. Regulatory mechanisms underlying the disease progression and prognosis are largely unknown. The study aimed to identify master regulators of mortality-related modules, providing potential therapeutic target for further translational experiments. METHODS: The dataset GSE65682 from the Gene Expression Omnibus (GEO) database was utilized for bioinformatic analysis. Consensus weighted gene co-expression netwoek analysis (WGCNA) was performed to identify modules of sepsis. The module most significantly associated with mortality were further analyzed for the identification of master regulators of transcription factors and miRNA. RESULTS: A total number of 682 subjects with various causes of sepsis were included for consensus WGCNA analysis, which identified 27 modules. The network was well preserved among different causes of sepsis. Two modules designated as black and light yellow module were found to be associated with mortality outcome. Key regulators of the black and light yellow modules were the transcription factor CEBPB (normalized enrichment score = 5.53) and ETV6 (NES = 6), respectively. The top 5 miRNA regulated the most number of genes were hsa-miR-335-5p (n = 59), hsa-miR-26b-5p (n = 57), hsa-miR-16-5p (n = 44), hsa-miR-17-5p (n = 42), and hsa-miR-124-3p (n = 38). Clustering analysis in 2-dimension space derived from manifold learning identified two subclasses of sepsis, which showed significant association with survival in Cox proportional hazard model (p = 0.018). CONCLUSIONS: The present study showed that the black and light-yellow modules were significantly associated with mortality outcome. Master regulators of the module included transcription factor CEBPB and ETV6. miRNA-target interactions identified significantly enriched miRNA.


Subject(s)
MicroRNAs , Sepsis , Computational Biology , Gene Expression Profiling , Gene Expression Regulation , Gene Regulatory Networks , Humans , MicroRNAs/genetics , Sepsis/genetics
20.
Sensors (Basel) ; 20(17)2020 Sep 02.
Article in English | MEDLINE | ID: mdl-32887451

ABSTRACT

Clock synchronization is still a vital and challenging task for underground coal wireless internet of things (IoT) due to the uncertainty of underground environment and unreliability of communication links. Instead of considering on-demand driven clock synchronization, this paper proposes a novel Adaptive Robust Synchronization (ARS) scheme with packets loss for mine wireless environment. A clock synchronization framework that is based on Kalman filtering is first proposed, which can adaptively adjust the sampling period of each clock and reduce the communication overhead in single-hop networks. The proposed scheme also solves the problem of outliers in data packets with time-stamps. In addition, this paper extends the ARS algorithm to multi-hop networks. Additionally, the upper and lower bounds of error covariance expectation are analyzed in the case of incomplete measurement. Extensive simulations are conducted in order to evaluate the performance. In the simulation environment, the clock accuracy of ARS algorithm is improved by 7.85% when compared with previous studies for single-hop networks. For multi-hop networks, the proposed scheme improves the accuracy by 12.56%. The results show that the proposed algorithm has high scalability, robustness, and accuracy, and can quickly adapt to different clock accuracy requirements.

SELECTION OF CITATIONS
SEARCH DETAIL
...