Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
ACS Infect Dis ; 10(4): 1312-1326, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38513073

ABSTRACT

New antimicrobial strategies are needed to address pathogen resistance to currently used antibiotics. Bacterial central metabolism is a promising target space for the development of agents that selectively target bacterial pathogens. 1-Deoxy-d-xylulose 5-phosphate synthase (DXPS) converts pyruvate and d-glyceraldehyde 3-phosphate (d-GAP) to DXP, which is required for synthesis of essential vitamins and isoprenoids in bacterial pathogens. Thus, DXPS is a promising antimicrobial target. Toward this goal, our lab has demonstrated selective inhibition of Escherichia coli DXPS by alkyl acetylphosphonate (alkylAP)-based bisubstrate analogs that exploit the requirement for ternary complex formation in the DXPS mechanism. Here, we present the first DXPS structure with a bisubstrate analog bound in the active site. Insights gained from this cocrystal structure guided structure-activity relationship studies of the bisubstrate scaffold. A low nanomolar inhibitor (compound 8) bearing a gem-dibenzyl glycine moiety conjugated to the acetylphosphonate pyruvate mimic via a triazole-based linker emerged from this study. Compound 8 was found to exhibit slow, tight-binding inhibition, with contacts to E. coli DXPS residues R99 and R478 demonstrated to be important for this behavior. This work has discovered the most potent DXPS inhibitor to date and highlights a new role of R99 that can be exploited in future inhibitor designs toward the development of a novel class of antimicrobial agents.


Subject(s)
Acetaldehyde/analogs & derivatives , Bacteria , Escherichia coli , Transferases , Anti-Bacterial Agents/chemistry , Pyruvates/metabolism
2.
ACS Catal ; 13(14): 9817-9828, 2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37497377

ABSTRACT

Cyclic arginine noncanonical amino acids (ncAAs) are found in several actinobacterial peptide natural products with therapeutically useful antibacterial properties. The preparation of ncAAs like enduracididine and capreomycidine currently takes multiple biosynthetic or chemosynthetic steps, thus limiting the commercial availability and applicability of these cyclic guanidine-containing amino acids. We recently discovered and characterized the biosynthetic pathway of guanitoxin, a potent freshwater cyanobacterial neurotoxin, that contains an arginine-derived cyclic guanidine phosphate within its highly polar structure. The ncAA l-enduracididine is an early intermediate in guanitoxin biosynthesis and is produced by GntC, a unique pyridoxal-5'-phosphate (PLP)-dependent enzyme. GntC catalyzes a cyclodehydration from a stereoselectively γ-hydroxylated l-arginine precursor via a reaction that functionally and mechanistically diverges from previously established actinobacterial cyclic arginine ncAA pathways. Herein, we interrogate l-enduracididine biosynthesis from the cyanobacterium Sphaerospermopsis torques-reginae ITEP-024 using spectroscopy, stable isotope labeling techniques, and X-ray crystallography structure-guided site-directed mutagenesis. GntC initially facilitates the reversible deprotonations of the α- and ß-positions of its substrate before catalyzing an irreversible diastereoselective dehydration and subsequent intramolecular cyclization. The comparison of holo- and substrate-bound GntC structures and activity assays on site-specific mutants further identified amino acid residues that contribute to the overall catalytic mechanism. These interdisciplinary efforts at structurally and functionally characterizing GntC enable an improved understanding of how nature divergently produces cyclic arginine ncAAs and generate additional tools for their biocatalytic production and downstream biological applications.

3.
bioRxiv ; 2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36993528

ABSTRACT

Cyclic arginine noncanonical amino acids (ncAAs) are found in several actinobacterial peptide natural products with therapeutically useful antibacterial properties. The preparation of ncAAs like enduracididine and capreomycidine currently takes multiple biosynthetic or chemosynthetic steps, thus limiting the commercial availability and applicability of these cyclic guanidine-containing amino acids. We recently discovered and characterized the biosynthetic pathway of guanitoxin, a potent freshwater cya-nobacterial neurotoxin, that contains an arginine-derived cyclic guanidine phosphate within its highly polar structure. The ncAA L-enduracididine is an early intermediate in guanitoxin biosynthesis and is produced by GntC, a unique pyridoxal-5'-phosphate (PLP)-dependent enzyme. GntC catalyzes a cyclodehydration from a stereoselectively γ-hydroxylated L-arginine precursor via a reaction that functionally and mechanistically diverges from previously established actinobacterial cyclic arginine ncAA pathways. Herein, we interrogate L-enduracididine biosynthesis from the cyanobacterium Sphaerospermopsis torques-reginae ITEP-024 using spectroscopic, stable isotope labeling techniques, and X-ray crystal structure-guided site-directed mutagenesis. GntC initially facilitates the reversible deprotonations of the α- and ß-positions of its substrate prior to catalyzing an irreversible diastereoselective dehydration and subsequent intramolecular cyclization. The comparison of holo- and substrate bound GntC structures and activity assays on sitespecific mutants further identified amino acid residues that contribute to the overall catalytic mechanism. These interdisciplinary efforts at structurally and functionally characterizing GntC enables an improved understanding of how Nature divergently produces cyclic arginine ncAAs and generates additional tools for their biocatalytic production and downstream biological applications.

4.
Biochemistry ; 61(17): 1844-1852, 2022 09 06.
Article in English | MEDLINE | ID: mdl-35985031

ABSTRACT

Vanadium-dependent haloperoxidases (VHPOs) from Streptomyces bacteria differ from their counterparts in fungi, macroalgae, and other bacteria by catalyzing organohalogenating reactions with strict regiochemical and stereochemical control. While this group of enzymes collectively uses hydrogen peroxide to oxidize halides for incorporation into electron-rich organic molecules, the mechanism for the controlled transfer of highly reactive chloronium ions in the biosynthesis of napyradiomycin and merochlorin antibiotics sets the Streptomyces vanadium-dependent chloroperoxidases apart. Here we report high-resolution crystal structures of two homologous VHPO family members associated with napyradiomycin biosynthesis, NapH1 and NapH3, that catalyze distinctive chemical reactions in the construction of meroterpenoid natural products. The structures, combined with site-directed mutagenesis and intact protein mass spectrometry studies, afforded a mechanistic model for the asymmetric alkene and arene chlorination reactions catalyzed by NapH1 and the isomerase activity catalyzed by NapH3. A key lysine residue in NapH1 situated between the coordinated vanadate and the putative substrate binding pocket was shown to be essential for catalysis. This observation suggested the involvement of the ε-NH2, possibly through formation of a transient chloramine, as the chlorinating species much as proposed in structurally distinct flavin-dependent halogenases. Unexpectedly, NapH3 is modified post-translationally by phosphorylation of an active site His (τ-pHis) consistent with its repurposed halogenation-independent, α-hydroxyketone isomerase activity. These structural studies deepen our understanding of the mechanistic underpinnings of VHPO enzymes and their evolution as enantioselective biocatalysts.


Subject(s)
Streptomyces , Vanadium , Anti-Bacterial Agents/chemistry , Catalysis , Isomerases , Vanadium/chemistry
5.
Nat Chem Biol ; 18(6): 664-669, 2022 06.
Article in English | MEDLINE | ID: mdl-35606558

ABSTRACT

Octocorals are major contributors of terpenoid chemical diversity in the ocean. Natural products from other sessile marine animals are primarily biosynthesized by symbiotic microbes rather than by the host. Here, we challenge this long-standing paradigm by describing a monophyletic lineage of animal-encoded terpene cyclases (TCs) ubiquitous in octocorals. We characterized 15 TC enzymes from nine genera, several of which produce precursors of iconic coral-specific terpenoids, such as pseudopterosin, lophotoxin and eleutherobin. X-ray crystallography revealed that coral TCs share conserved active site residues and structural features with bacterial TCs. The identification of coral TCs enabled the targeted identification of the enzyme that constructs the coral-exclusive capnellane scaffold. Several TC genes are colocalized with genes that encode enzymes known to modify terpenes. This work presents an example of biosynthetic capacity in the kingdom Animalia that rivals the chemical complexity generated by plants, unlocking the biotechnological potential of octocorals for biomedical applications.


Subject(s)
Anthozoa , Animals , Bacteria/genetics , Terpenes/chemistry
6.
Nat Chem Biol ; 18(5): 538-546, 2022 05.
Article in English | MEDLINE | ID: mdl-35314816

ABSTRACT

The marine microbial natural product salinosporamide A (marizomib) is a potent proteasome inhibitor currently in clinical trials for the treatment of brain cancer. Salinosporamide A is characterized by a complex and densely functionalized γ-lactam-ß-lactone bicyclic warhead, the assembly of which has long remained a biosynthetic mystery. Here, we report an enzymatic route to the salinosporamide core catalyzed by a standalone ketosynthase (KS), SalC. Chemoenzymatic synthesis of carrier protein-tethered substrates, as well as intact proteomics, allowed us to probe the reactivity of SalC and understand its role as an intramolecular aldolase/ß-lactone synthase with roles in both transacylation and bond-forming reactions. Additionally, we present the 2.85-Å SalC crystal structure that, combined with site-directed mutagenesis, allowed us to propose a bicyclization reaction mechanism. This work challenges our current understanding of the role of KS enzymes and establishes a basis for future efforts toward streamlined production of a clinically relevant chemotherapeutic.


Subject(s)
Biological Products , Lactams , Biological Products/pharmacology , Lactones/chemistry , Proteasome Inhibitors , Pyrroles/pharmacology
7.
J Inorg Biochem ; 230: 111768, 2022 05.
Article in English | MEDLINE | ID: mdl-35202981

ABSTRACT

Methyl-Coenzyme M Reductase (MCR) catalyzes the biosynthesis of methane in methanogenic archaea, using a catalytic Ni-centered Cofactor F430 in its active site. It also catalyzes the reverse reaction, that is, the anaerobic activation and oxidation, including the cleavage of the CH bond in methane. Because methanogenesis is the major source of methane on earth, understanding the reaction mechanism of this enzyme can have massive implications in global energy balances. While recent publications have proposed a radical-based catalytic mechanism as well as novel sulfonate-based binding modes of MCR for its native substrates, the structure of the active state of MCR, as well as a complete characterization of the reaction, remain elusive. Previous attempts to structurally characterize the active MCR-Ni(I) state have been unsuccessful due to oxidation of the redox- sensitive catalytic Ni center. Further, while many cryo structures of the inactive Ni(II)-enzyme in various substrates-bound forms have been published, no room temperature structures have been reported, and the structure and mechanism of MCR under physiologically relevant conditions is not known. In this study, we report the first room temperature structure of the MCRred1-silent Ni(II) form using an X-ray Free-Electron Laser (XFEL), with simultaneous X-ray Emission Spectroscopy (XES) and X-ray Diffraction (XRD) data collection. In celebration of the seminal contributions of inorganic chemist Dick Holm to our understanding of nickel-based catalysis, we are honored to announce our findings in this special issue dedicated to this remarkable pioneer of bioinorganic chemistry.


Subject(s)
Lasers , Methane , Crystallography, X-Ray , Methane/chemistry , Oxidation-Reduction , Oxidoreductases , Temperature
8.
Nat Chem Biol ; 17(4): 485-491, 2021 04.
Article in English | MEDLINE | ID: mdl-33462497

ABSTRACT

Tryptophan 2C methyltransferase (TsrM) methylates C2 of the indole ring of L-tryptophan during biosynthesis of the quinaldic acid moiety of thiostrepton. TsrM is annotated as a cobalamin-dependent radical S-adenosylmethionine (SAM) methylase; however, TsrM does not reductively cleave SAM to the universal 5'-deoxyadenosyl 5'-radical intermediate, a hallmark of radical SAM (RS) enzymes. Herein, we report structures of TsrM from Kitasatospora setae, which are the first structures of a cobalamin-dependent radical SAM methylase. Unexpectedly, the structures show an essential arginine residue that resides in the proximal coordination sphere of the cobalamin cofactor, and a [4Fe-4S] cluster that is ligated by a glutamyl residue and three cysteines in a canonical CXXXCXXC RS motif. Structures in the presence of substrates suggest a substrate-assisted mechanism of catalysis, wherein the carboxylate group of SAM serves as a general base to deprotonate N1 of the tryptophan substrate, facilitating the formation of a C2 carbanion.


Subject(s)
Methyltransferases/metabolism , Methyltransferases/ultrastructure , Arginine/chemistry , Catalysis , Coenzymes , Iron-Sulfur Proteins/metabolism , Methylation , S-Adenosylmethionine , Streptomycetaceae/genetics , Streptomycetaceae/metabolism , Thiostrepton/biosynthesis , Tryptophan/metabolism , Vitamin B 12/chemistry , X-Ray Diffraction/methods
9.
J Biol Chem ; 294(33): 12405-12414, 2019 08 16.
Article in English | MEDLINE | ID: mdl-31239351

ABSTRACT

1-Deoxy-d-xylulose 5-phosphate synthase (DXPS) uses thiamine diphosphate (ThDP) to convert pyruvate and d-glyceraldehyde 3-phosphate (d-GAP) into 1-deoxy-d-xylulose 5-phosphate (DXP), an essential bacterial metabolite. DXP is not utilized by humans; hence, DXPS has been an attractive antibacterial target. Here, we investigate DXPS from Deinococcus radiodurans (DrDXPS), showing that it has similar kinetic parameters Kmd-GAP and Kmpyruvate (54 ± 3 and 11 ± 1 µm, respectively) and comparable catalytic activity (kcat = 45 ± 2 min-1) with previously studied bacterial DXPS enzymes and employing it to obtain missing structural data on this enzyme family. In particular, we have determined crystallographic snapshots of DrDXPS in two states along the reaction coordinate: a structure of DrDXPS bound to C2α-phosphonolactylThDP (PLThDP), mimicking the native pre-decarboxylation intermediate C2α-lactylThDP (LThDP), and a native post-decarboxylation state with a bound enamine intermediate. The 1.94-Å-resolution structure of PLThDP-bound DrDXPS delineates how two active-site histidine residues stabilize the LThDP intermediate. Meanwhile, the 2.40-Å-resolution structure of an enamine intermediate-bound DrDXPS reveals how a previously unknown 17-Å conformational change removes one of the two histidine residues from the active site, likely triggering LThDP decarboxylation to form the enamine intermediate. These results provide insight into how the bi-substrate enzyme DXPS limits side reactions by arresting the reaction on the less reactive LThDP intermediate when its cosubstrate is absent. They also offer a molecular basis for previous low-resolution experimental observations that correlate decarboxylation of LThDP with protein conformational changes.


Subject(s)
Bacterial Proteins/chemistry , Deinococcus/enzymology , Glyceraldehyde 3-Phosphate/chemistry , Pentosephosphates/chemistry , Transferases/chemistry , Crystallography, X-Ray , Protein Domains
10.
Joule ; 3(2): 595-611, 2019 Feb 20.
Article in English | MEDLINE | ID: mdl-31080943

ABSTRACT

2-oxoglutarate:ferredoxin oxidoreductase (OGOR) is a thiamine pyrophosphate (TPP) and [4Fe-4S] cluster-dependent enzyme from the reductive tricarboxylic acid (rTCA) cycle that fixes CO2 to succinyl-CoA, forming 2-oxoglutarate and CoA. Here we report an OGOR from the rTCA cycle of Magnetococcus marinus MC-1, along with all three potential ferredoxin (Fd) redox partners. We demonstrate MmOGOR operates bidirectionally (both CO2-fixing and 2-oxoglutarate oxidizing), and that only one Fd (MmFd1) supports efficient catalysis. Our 1.94-Å and 2.80-Å resolution crystal structures of native and substrate-bound forms of MmOGOR reveal the determinants of substrate specificity and CoA-binding in an OGOR, and illuminate the [4Fe-4S] cluster environment, portraying the electronic conduit allowing MmFd1 to be wired to the bound-TPP. Structural and biochemical data further identify Glu45α as a mobile residue that impacts catalytic bias toward CO2-fixation although it makes no direct contact with TPP-bound intermediates, indicating that reaction directionality can be tuned by second layer interactions. (149 of 150 words limit).

11.
J Biol Chem ; 293(26): 10404-10412, 2018 06 29.
Article in English | MEDLINE | ID: mdl-29700111

ABSTRACT

Ribonucleotide reductases (RNRs) convert ribonucleotides to deoxynucleotides, a process essential for DNA biosynthesis and repair. Class Ia RNRs require two dimeric subunits for activity: an α2 subunit that houses the active site and allosteric regulatory sites and a ß2 subunit that houses the diferric tyrosyl radical cofactor. Ribonucleotide reduction requires that both subunits form a compact α2ß2 state allowing for radical transfer from ß2 to α2 RNR activity is regulated allosterically by dATP, which inhibits RNR, and by ATP, which restores activity. For the well-studied Escherichia coli class Ia RNR, dATP binding to an allosteric site on α promotes formation of an α4ß4 ring-like state. Here, we investigate whether the α4ß4 formation causes or results from RNR inhibition. We demonstrate that substitutions at the α-ß interface (S37D/S39A-α2, S39R-α2, S39F-α2, E42K-α2, or L43Q-α2) that disrupt the α4ß4 oligomer abrogate dATP-mediated inhibition, consistent with the idea that α4ß4 formation is required for dATP's allosteric inhibition of RNR. Our results further reveal that the α-ß interface in the inhibited state is highly sensitive to manipulation, with a single substitution interfering with complex formation. We also discover that residues at the α-ß interface whose substitution has previously been shown to cause a mutator phenotype in Escherichia coli (i.e. S39F-α2 or E42K-α2) are impaired only in their activity regulation, thus linking this phenotype with the inability to allosterically down-regulate RNR. Whereas the cytotoxicity of RNR inhibition is well-established, these data emphasize the importance of down-regulation of RNR activity.


Subject(s)
Amino Acid Substitution , Escherichia coli/enzymology , Protein Multimerization/genetics , Ribonucleotide Reductases/antagonists & inhibitors , Ribonucleotide Reductases/genetics , Allosteric Regulation/drug effects , Allosteric Regulation/genetics , Deoxyadenine Nucleotides/pharmacology , Models, Molecular , Protein Structure, Quaternary/genetics , Ribonucleotide Reductases/chemistry
12.
Proc Natl Acad Sci U S A ; 115(15): 3846-3851, 2018 04 10.
Article in English | MEDLINE | ID: mdl-29581263

ABSTRACT

Pyruvate:ferredoxin oxidoreductase (PFOR) is a microbial enzyme that uses thiamine pyrophosphate (TPP), three [4Fe-4S] clusters, and coenzyme A (CoA) in the reversible oxidation of pyruvate to generate acetyl-CoA and carbon dioxide. The two electrons that are generated as a result of pyruvate decarboxylation are used in the reduction of low potential ferredoxins, which provide reducing equivalents for central metabolism, including the Wood-Ljungdahl pathway. PFOR is a member of the 2-oxoacid:ferredoxin oxidoreductase (OFOR) superfamily, which plays major roles in both microbial redox reactions and carbon dioxide fixation. Here, we present a set of crystallographic snapshots of the best-studied member of this superfamily, the PFOR from Moorella thermoacetica (MtPFOR). These snapshots include the native structure, those of lactyl-TPP and acetyl-TPP reaction intermediates, and the first of an OFOR with CoA bound. These structural data reveal the binding site of CoA as domain III, the function of which in OFORs was previously unknown, and establish sequence motifs for CoA binding in the OFOR superfamily. MtPFOR structures further show that domain III undergoes a conformational change upon CoA binding that seals off the active site and positions the thiolate of CoA directly adjacent to the TPP cofactor. These structural findings provide a molecular basis for the experimental observation that CoA binding accelerates catalysis by 105-fold.


Subject(s)
Bacterial Proteins/chemistry , Coenzyme A/metabolism , Moorella/enzymology , Pyruvate Synthase/chemistry , Pyruvate Synthase/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Binding Sites , Carbon Dioxide/chemistry , Carbon Dioxide/metabolism , Coenzyme A/chemistry , Crystallography, X-Ray , Ferredoxins/chemistry , Ferredoxins/metabolism , Kinetics , Moorella/chemistry , Moorella/genetics , Pyruvate Synthase/genetics , Pyruvic Acid/chemistry , Pyruvic Acid/metabolism
13.
Curr Opin Struct Biol ; 41: 54-61, 2016 12.
Article in English | MEDLINE | ID: mdl-27315560

ABSTRACT

2-Oxoacid:ferredoxin oxidoreductases (OFORs) are essential enzymes in microbial one-carbon metabolism. They use thiamine pyrophosphate to reversibly cleave carbon-carbon bonds, generating low potential (∼-500mV) electrons. Crystallographic analysis of a recently discovered OFOR, an oxalate oxidoreductase (OOR), has provided a second view of OFOR architecture and active site composition. Using these recent structural data along with the previously determined structures of pyruvate:ferredoxin oxidoreductase, structure-function relationships in this superfamily have been expanded and re-evaluated. Additionally, structural motifs have been defined that better serve to distinguish one OFOR subfamily from another and potentially uncover novel OFORs.


Subject(s)
Keto Acids/metabolism , Oxidoreductases/chemistry , Oxidoreductases/metabolism , Phylogeny , Coenzymes/metabolism , Humans
14.
Elife ; 5: e13977, 2016 02 03.
Article in English | MEDLINE | ID: mdl-26843316

ABSTRACT

The metallocofactor involved in fixing nitrogen is not a rigid scaffold, as was previously thought.


Subject(s)
Bacterial Proteins/metabolism , Nitrogen Fixation , Iron
15.
Elife ; 5: e07141, 2016 Jan 12.
Article in English | MEDLINE | ID: mdl-26754917

ABSTRACT

Ribonucleotide reductase (RNR) converts ribonucleotides to deoxyribonucleotides, a reaction that is essential for DNA biosynthesis and repair. This enzyme is responsible for reducing all four ribonucleotide substrates, with specificity regulated by the binding of an effector to a distal allosteric site. In all characterized RNRs, the binding of effector dATP alters the active site to select for pyrimidines over purines, whereas effectors dGTP and TTP select for substrates ADP and GDP, respectively. Here, we have determined structures of Escherichia coli class Ia RNR with all four substrate/specificity effector-pairs bound (CDP/dATP, UDP/dATP, ADP/dGTP, GDP/TTP) that reveal the conformational rearrangements responsible for this remarkable allostery. These structures delineate how RNR 'reads' the base of each effector and communicates substrate preference to the active site by forming differential hydrogen bonds, thereby maintaining the proper balance of deoxynucleotides in the cell.


Subject(s)
Allosteric Regulation , Deoxyribonucleotides/chemistry , Deoxyribonucleotides/metabolism , Escherichia coli/enzymology , Ribonucleotide Reductases/chemistry , Ribonucleotide Reductases/metabolism , Crystallography, X-Ray , Models, Molecular , Protein Conformation , Substrate Specificity
16.
Proc Natl Acad Sci U S A ; 113(2): 320-5, 2016 Jan 12.
Article in English | MEDLINE | ID: mdl-26712008

ABSTRACT

Thiamine pyrophosphate (TPP)-dependent oxalate oxidoreductase (OOR) metabolizes oxalate, generating two molecules of CO2 and two low-potential electrons, thus providing both the carbon and reducing equivalents for operation of the Wood-Ljungdahl pathway of acetogenesis. Here we present structures of OOR in which two different reaction intermediate bound states have been trapped: the covalent adducts between TPP and oxalate and between TPP and CO2. These structures, along with the previously determined structure of substrate-free OOR, allow us to visualize how active site rearrangements can drive catalysis. Our results suggest that OOR operates via a bait-and-switch mechanism, attracting substrate into the active site through the presence of positively charged and polar residues, and then altering the electrostatic environment through loop and side chain movements to drive catalysis. This simple but elegant mechanism explains how oxalate, a molecule that humans and most animals cannot break down, can be used for growth by acetogenic bacteria.


Subject(s)
Carbon/metabolism , Moorella/enzymology , Oxidoreductases/metabolism , Catalytic Domain , Crystallography, X-Ray , Models, Molecular , Oxalates/metabolism , Oxidation-Reduction , Oxidoreductases/chemistry , Protein Structure, Tertiary , Solvents
17.
Nature ; 526(7574): 536-41, 2015 Oct 22.
Article in English | MEDLINE | ID: mdl-26416754

ABSTRACT

Photoreceptor proteins enable organisms to sense and respond to light. The newly discovered CarH-type photoreceptors use a vitamin B12 derivative, adenosylcobalamin, as the light-sensing chromophore to mediate light-dependent gene regulation. Here we present crystal structures of Thermus thermophilus CarH in all three relevant states: in the dark, both free and bound to operator DNA, and after light exposure. These structures provide visualizations of how adenosylcobalamin mediates CarH tetramer formation in the dark, how this tetramer binds to the promoter -35 element to repress transcription, and how light exposure leads to a large-scale conformational change that activates transcription. In addition to the remarkable functional repurposing of adenosylcobalamin from an enzyme cofactor to a light sensor, we find that nature also repurposed two independent protein modules in assembling CarH. These results expand the biological role of vitamin B12 and provide fundamental insight into a new mode of light-dependent gene regulation.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Cobamides/metabolism , Gene Expression Regulation, Bacterial , Thermus thermophilus , Vitamin B 12/metabolism , Amino Acid Sequence , Bacterial Proteins/metabolism , Base Sequence , Cobamides/radiation effects , Crystallography, X-Ray , DNA, Bacterial/genetics , DNA, Bacterial/metabolism , Darkness , Dimerization , Gene Expression Regulation, Bacterial/radiation effects , Light , Models, Molecular , Molecular Sequence Data , Operator Regions, Genetic/genetics , Promoter Regions, Genetic/genetics , Protein Structure, Quaternary/radiation effects , Thermus thermophilus/chemistry , Thermus thermophilus/genetics , Thermus thermophilus/radiation effects , Transcription, Genetic/genetics , Transcription, Genetic/radiation effects , Vitamin B 12/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...