Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Heart Lung Transplant ; 37(1): 107-115, 2018 01.
Article in English | MEDLINE | ID: mdl-28651907

ABSTRACT

BACKGROUND: Non-surgical bleeding (NSB) due to angiodysplasia is common in left ventricular assist device (LVAD) patients. Thrombin-induced angiopoietin-2 (Ang-2) expression in LVAD patients leads to altered angiogenesis and is associated with lower angiopoietin-1 (Ang-1) and increased NSB. However, the mechanism for decreased Ang-1, made by pericytes, is unknown and the origin of thrombin in LVAD patients is unclear. We hypothesized that high tumor necrosis factor-α (TNF-α) levels in LVAD patients induce pericyte apoptosis, tissue factor (TF) expression and vascular instability. METHODS: We incubated cultured pericytes with serum from patients with heart failure (HF), LVAD or orthotopic heart transplantation (OHT), with or without TNF-α blockade. We performed several measurements: Ang-1 expression was assessed by reverse transcript-polymerase chain reaction (RT-PCR) and pericyte death fluorescently; TF expression was assessed by RT-PCR in cultured endothelial cells incubated with patient plasma with or without TNF-α blockade; and TF expression was assessed in endothelial biopsy samples from these patients by immunofluorescence. We incubated cultured endothelial cells on Matrigel with patient serum with or without TNF-α blockade and determined tube formation by microscopy. RESULTS: Serum from LVAD patients had higher levels of TNF-α, suppressed Ang-1 expression in pericytes, and induced pericyte death, and there was accelerated endothelial tube formation compared with serum from patients without LVADs. TF was higher in both plasma and endothelial cells from LVAD patients, and plasma from LVAD patients induced more endothelial TF expression. All of these effects were reversed or reduced with TNF-α blockade. High levels of TNF-α were associated with increased risk of NSB. CONCLUSIONS: Elevated TNF-α in LVAD patients is a central regulator of altered angiogenesis, pericyte apoptosis and expression of TF and Ang-1.


Subject(s)
Heart-Assist Devices/adverse effects , Hemorrhage/blood , Hemorrhage/etiology , Postoperative Complications/blood , Postoperative Complications/etiology , Tumor Necrosis Factor-alpha/blood , Aged , Female , Humans , Male , Middle Aged
2.
JCI Insight ; 2(13)2017 Jul 06.
Article in English | MEDLINE | ID: mdl-28679962

ABSTRACT

Although left ventricular (LV) diastolic dysfunction is often associated with hypertension, little is known regarding its underlying pathophysiological mechanism. Here, we show that the actin cytoskeletal regulator, Rho-associated coiled-coil containing kinase-2 (ROCK2), is a critical mediator of LV diastolic dysfunction. In response to angiotensin II (Ang II), mutant mice with fibroblast-specific deletion of ROCK2 (ROCK2Postn-/-) developed less LV wall thickness and fibrosis, along with improved isovolumetric relaxation. This corresponded with decreased connective tissue growth factor (CTGF) and fibroblast growth factor-2 (FGF2) expression in the hearts of ROCK2Postn-/- mice. Indeed, knockdown of ROCK2 in cardiac fibroblasts leads to decreased expression of CTGF and secretion of FGF2, and cardiomyocytes incubated with conditioned media from ROCK2-knockdown cardiac fibroblasts exhibited less hypertrophic response. In contrast, mutant mice with elevated fibroblast ROCK activity exhibited enhanced Ang II-stimulated cardiac hypertrophy and fibrosis. Clinically, higher leukocyte ROCK2 activity was observed in patients with diastolic dysfunction compared with age- and sex-matched controls, and correlated with higher grades of diastolic dysfunction by echocardiography. These findings indicate that fibroblast ROCK2 is necessary to cause cardiac hypertrophy and fibrosis through the induction CTGF and FGF2, and they suggest that targeting ROCK2 may have therapeutic benefits in patients with LV diastolic dysfunction.

3.
Circulation ; 134(2): 141-52, 2016 Jul 12.
Article in English | MEDLINE | ID: mdl-27354285

ABSTRACT

BACKGROUND: Nonsurgical bleeding is the most common adverse event in patients with continuous-flow left ventricular assist devices (LVADs) and is caused by arteriovenous malformations. We hypothesized that deregulation of an angiogenic factor, angiopoietin-2 (Ang-2), in patients with LVADs leads to increased angiogenesis and higher nonsurgical bleeding. METHODS: Ang-2 and thrombin levels were measured by ELISA and Western blotting, respectively, in blood samples from 101 patients with heart failure, LVAD, or orthotopic heart transplantation. Ang-2 expression in endothelial biopsy was quantified by immunofluorescence. Angiogenesis was determined by in vitro tube formation from serum from each patient with or without Ang-2-blocking antibody. Ang-2 gene expression was measured by reverse transcription-polymerase chain reaction in endothelial cells incubated with plasma from each patient with or without the thrombin receptor blocker vorapaxar. RESULTS: Compared with patients with heart failure or those with orthotopic heart transplantation, serum levels and endothelial expression of Ang-2 were higher in LVAD patients (P=0.001 and P<0.001, respectively). This corresponded to an increased angiogenic potential of serum from patients with LVADs (P<0.001), which was normalized with Ang-2 blockade. Furthermore, plasma from LVAD patients contained higher amounts of thrombin (P=0.003), which was associated with activation of the contact coagulation system. Plasma from LVAD patients induced more Ang-2 gene expression in endothelial cells (P<0.001), which was reduced with thrombin receptor blockade (P=0.013). LVAD patients with Ang-2 levels above the mean (12.32 ng/mL) had more nonsurgical bleeding events compared with patients with Ang-2 levels below the mean (P=0.003). CONCLUSIONS: Our findings indicate that thrombin-induced Ang-2 expression in LVAD patients leads to increased angiogenesis in vitro and may be associated with higher nonsurgical bleeding events. Ang-2 therefore may contribute to arteriovenous malformation formation and subsequent bleeding in LVAD patients.


Subject(s)
Angiopoietin-2/blood , Hemorrhage/etiology , Neovascularization, Pathologic/etiology , Aged , Angiopoietin-2/biosynthesis , Angiopoietin-2/genetics , Arteriovenous Malformations/complications , Biomarkers , Cross-Sectional Studies , Endothelial Cells/metabolism , Female , Heart-Assist Devices , Human Umbilical Vein Endothelial Cells , Humans , Male , Middle Aged , Neovascularization, Pathologic/blood , Neovascularization, Pathologic/physiopathology , Thrombin/pharmacology
4.
Sci Rep ; 6: 24578, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-27080907

ABSTRACT

Malignant mesothelioma (MM), is an intractable disease with limited therapeutic options and grim survival rates. Altered metabolic and mitochondrial functions are hallmarks of MM and most other cancers. Mitochondria exist as a dynamic network, playing a central role in cellular metabolism. MM cell lines display a spectrum of altered mitochondrial morphologies and function compared to control mesothelial cells. Fractal dimension and lacunarity measurements are a sensitive and objective method to quantify mitochondrial morphology and most importantly are a promising predictor of response to mitochondrial inhibition. Control cells have high fractal dimension and low lacunarity and are relatively insensitive to mitochondrial inhibition. MM cells exhibit a spectrum of sensitivities to mitochondrial inhibitors. Low mitochondrial fractal dimension and high lacunarity correlates with increased sensitivity to the mitochondrial inhibitor metformin. Lacunarity also correlates with sensitivity to Mdivi-1, a mitochondrial fission inhibitor. MM and control cells have similar sensitivities to cisplatin, a chemotherapeutic agent used in the treatment of MM. Neither oxidative phosphorylation nor glycolytic activity, correlated with sensitivity to either metformin or mdivi-1. Our results suggest that mitochondrial inhibition may be an effective and selective therapeutic strategy in mesothelioma, and identifies mitochondrial morphology as a possible predictor of response to targeted mitochondrial inhibition.


Subject(s)
Fractals , Lung Neoplasms/pathology , Mesothelioma/pathology , Mitochondria/metabolism , Cell Line, Tumor , Cisplatin/pharmacology , Glycolysis , Humans , Lung Neoplasms/metabolism , Mesothelioma/metabolism , Mesothelioma, Malignant , Metformin/pharmacology , Mitochondria/drug effects , Mitochondrial Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL