Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 105
Filter
1.
Front Plant Sci ; 15: 1383018, 2024.
Article in English | MEDLINE | ID: mdl-38774221

ABSTRACT

Pinus sibirica is primarily distributed in Siberia. Owing to its excellent cold resistance and development potential, it has become an important introduced tree species in the Greater Xing'an area of China. Pine wilt disease, triggered by the pine wood nematode (PWN, Bursaphelenchus xylophilus), constitutes a profoundly critical affliction within forest ecosystems. Its incidence has extended to the northeastern region of China in recent years. To explore the potential host status of P. sibirica in the Greater Xing'an area for PWN and to elucidate the responses following inoculation, artificial inoculation, transcriptomics, and metabolomics methods were used. In the artificial inoculation experiments, quantitative analysis of nematode populations within the trees demonstrated that PWN exhibited normal growth and reproductive capabilities within P. sibirica. Subsequently, transcriptome and metabolome sequencing were conducted at four time points before disease onset (3-, 5-, 7-, and 9-days post inoculation). Gene trend analysis and differentially expressed gene screening were employed and the results indicated that genes associated with the flavonoid biosynthesis pathway exhibited predominant enrichment among the up-regulated genes. Metabolome analysis showed that the abundance of flavonoid-related metabolites in P. sibirica increased after inoculation with PWN. Integrated analysis of transcriptome and metabolome revealed that after PWN inoculation in P. sibirica, two chalcone synthase (chs) genes and a chalcone isomerase (chi) gene were significantly upregulated, and the upregulation should accumulate naringenin, pinocembrin, and apigenin to help P. sibirica resist infection of PWN. The results suggested that flavonoid biosynthesis pathway continued to respond after P. sibirica was infected with PWN and played an important role in the interaction between P. sibirica and PWN.

2.
Nat Commun ; 15(1): 3115, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38600102

ABSTRACT

Nickel is the most widely used inexpensive active metal center of the heterogeneous catalysts for CO2 hydrogenation to methane. However, Ni-based catalysts suffer from severe deactivation in CO2 methanation reaction due to the irreversible sintering and coke deposition caused by the inevitable localized hotspots generated during the vigorously exothermic reaction. Herein, we demonstrate the inverse CeAlOx/Ni composite constructed on the Ni-foam structure support realizes remarkable CO2 methanation catalytic activity and stability in a wide operation temperature range from 240 to 600 °C. Significantly, CeAlOx/Ni/Ni-foam catalyst maintains its initial activity after seven drastic heating-cooling cycles from RT to 240 to 600 °C. Meanwhile, the structure catalyst also shows water resistance and long-term stability under reaction condition. The promising thermal stability and water-resistance of CeAlOx/Ni/Ni-foam originate from the excellent heat and mass transport efficiency which eliminates local hotspots and the formation of Ni-foam stabilized CeAlOx/Ni inverse composites which effectively anchored the active species and prevents carbon deposition from CH4 decomposition.

3.
Biology (Basel) ; 13(2)2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38392341

ABSTRACT

Under ion imbalance, water deficiency, and salt stress, the osmotic pressure of the tree sap increases, and pine wood nematodes (Bursaphelenchus xylophilus, PWN) parasitizing in the trees may be subjected to high-osmotic-pressure stress. KCl, L-malic acid, sucrose, and glycerol solutions were used as osmolytes to explore the highest osmotic concentration that PWN can tolerate. Survival analysis showed that when the treatment concentration exceeded 90%, only a few nematodes in the glycerol group survived under 6 h treatment, and most of the survivors were third-stage dispersal juveniles (DJ3). Further examination revealed that under different concentrations of glycerol-induced high osmotic pressure, the survival rate and body length change rate were the highest in the DJ3 and the lowest in the second-stage propagative juveniles. In order to explore the molecular mechanism of resistance of DJ3 to high osmotic stress, transcriptome sequencing was performed at each developmental stage of PWN and differentially expressed genes that were up-regulated or down-regulated only in DJ3 were screened. The expression of genes related to CoA in DJ3, a key enzyme in metabolism, was significantly higher than the other developmental stages. In addition, the expression of the anti-reversal signal pathway-related gene AKT-1 in DJ3 was significantly lower than in the other development stages. Therefore, the specific expression of genes in DJ3 under high osmotic pressure may help them rapidly produce and accumulate energy-related compounds and activate the adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) pathway to respond to damage caused by high-osmotic-pressure stress in time, thus promoting survival.

4.
Pathol Res Pract ; 254: 155068, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38215565

ABSTRACT

As a member of the nebulin protein family and a structural protein of cytoskeleton, NEBL plays an important role in cardiac diseases. Recently, literature have reported the involvement of NEBL in the occurrence and development of various cancers except clear cell renal cell carcinoma (ccRCC). In this study, we found that mRNA and protein of NEBL are downregulated remarkably in ccRCC tissues based on both the TCGA database and clinical samples we collected. The areas under curve values of NEBL analyzed based on the TCGA database, qRT-PCR and IHC results were 0.9376, 0.9733 and 0.9807, respectively. The lower mRNA level of NEBL was associated with worse outcomes in ccRCC patients. When overexpressing NEBL in ccRCC cell lines, the proliferation, migration and invasion of ccRCC cells were suppressed significantly, suggesting a tumor suppressor role of NEBL. In addition, we identified that NEBL is closely related to epithelial-mesenchymal transition (EMT), thereby reducing the motility of ccRCC cells. Furthermore, the lower expression of NEBL was correlated with ccRCC patients with distant organ metastasis. In summary, we firstly described the aberrant expression of NEBL and revealed its tumor suppressor role in ccRCC. Our data support that NEBL could serve as a valuable diagnostic and prognostic biomarker in ccRCC, as well as a promising therapeutic target.


Subject(s)
Carcinoma, Renal Cell , Carcinoma , Kidney Neoplasms , Humans , Carcinoma/genetics , Carcinoma, Renal Cell/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Down-Regulation , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic/genetics , Kidney Neoplasms/pathology , RNA, Messenger/genetics
5.
Small ; 20(7): e2306221, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37803408

ABSTRACT

Direct ethanol fuel cells hold great promise as a power source. However, their commercialization is limited by anode catalysts with insufficient selectivity toward a complete oxidation of ethanol for a high energy density, as well as sluggish catalytic kinetics and low stability. To optimize the catalytic performance, rationally tuning surface structure or interface structure is highly desired. Herein, a facile route is reported to the synthesis of Rh nanosheets-supported tetrahedral Rh nanocrystals (Rh THs/NSs), which possess self-supporting homogeneous interface between Rh tetrahedrons and Rh nanosheets. Due to full leverage of the structural advantages within the given structure and construction of interfaces, the Rh THs/NSs can serve as highly active electro-catalysts with excellent mass activity and selectivity toward ethanol electro-oxidation. The in situ Fourier transform infrared reflection spectroscopy showed the Rh THs/NSs exhibit the highest C1 pathway selectivity of 23.2%, far exceeding that of Rh nanotetrahedra and Rh nanosheets. Density function theory calculations further demonstrated that self-interface between Rh nanosheets and tetrahedra is beneficial for C-C bond cleavage of ethanol. Meanwhile, the self-supporting of 2D nanosheets greatly enhance the stability of tetrahedra, which improves the catalytic stability.

6.
J Chem Phys ; 159(10)2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37698197

ABSTRACT

Colloidal quantum confined semiconductor-metal heterostructures are promising candidates for solar energy conversion because their light absorbing semiconductor and catalytic components can be independently tuned and optimized. Although the light-to-hydrogen efficiencies of such systems have shown interesting dependences on the morphologies of the semiconductor and metal domains, the mechanisms of such dependences are poorly understood. Here, we use Pt tipped 0D CdS quantum dots (with ∼4.6 nm diameter) and 1D CdS nanorods (of ∼13.8, 27.8, 66.6, and 88.9 nm average rod lengths) as a model system to study the distance-dependence of charge separation and charge recombination times and their impacts on photo-driven H2 production. The H2 generation quantum efficiency increases from 0.2% ± 0.0% in quantum dots to 28.9% ± 0.4% at a rod length of 28 nm and shows negligible changes at longer rod lengths. The half-life time of electron transfer from CdS to Pt increases monotonically with rod length, from 0.7 ± 0.1 in quantum dots to 170.2 ± 29.5 ps in the longest rods, corresponding to a slight decrease in electron transfer quantum efficiency from 92% to 81%. The amplitude-weighted average lifetime of charge recombination of the electron in Pt with the hole in CdS increases from 4.7 ± 0.4 µs in quantum dots to 149 ± 34 µs in 28 nm nanorods, and the lifetime does not increase further in longer rods, resembling the trend in the observed H2 generation quantum efficiency. Our result suggests that the competition of the charge recombination process with the hole removal by the sacrificial electron donor plays a dominant role in the observed nanorod length dependent overall light driven H2 generation quantum efficiency.

7.
Dev Cell ; 58(4): 289-305.e6, 2023 02 27.
Article in English | MEDLINE | ID: mdl-36800997

ABSTRACT

Dynamic interaction between lipid droplets (LDs) and mitochondria controls the mobilization of long-chain fatty acids (LCFAs) from LDs for mitochondrial ß-oxidation in skeletal muscle in response to energy stress. However, little is known about the composition and regulation of the tethering complex mediating LD-mitochondrion interaction. Here, we identify Rab8a as a mitochondrial receptor for LDs forming the tethering complex with the LD-associated PLIN5 in skeletal muscle. In rat L6 skeletal muscle cells, the energy sensor AMPK increases the GTP-bound active Rab8a that promotes LD-mitochondrion interaction through binding to PLIN5 upon starvation. The assembly of the Rab8a-PLIN5 tethering complex also recruits the adipose triglyceride lipase (ATGL), which couples LCFA mobilization from LDs with its transfer into mitochondria for ß-oxidation. Rab8a deficiency impairs fatty acid utilization and decreases endurance during exercise in a mouse model. These findings may help to elucidate the regulatory mechanisms underlying the beneficial effects of exercise on lipid homeostasis control.


Subject(s)
Lipid Droplets , Lipid Metabolism , Mice , Rats , Animals , Lipid Droplets/metabolism , Mitochondria/metabolism , Carrier Proteins/metabolism , Fatty Acids/metabolism , Muscle, Skeletal/metabolism , rab GTP-Binding Proteins/metabolism
8.
Nanoscale ; 15(8): 3772-3779, 2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36723133

ABSTRACT

Proton-exchange membrane fuel cells are considered as promising energy-conversion devices. Alloying 3d transition metals with noble metals not only highly improves the performance of noble metal-based catalysts towards electrocatalytic reactions in fuel cells due to d-d hybridization interaction but also decreases the total cost. However, the rapid leaching of transition metal atoms leads to a fast decay of the activity, which seriously affects the performance of the fuel cell. Herein, alloyed Pd-main group metal (e.g. Pb, Bi, Sn) ultrathin nanowires were realized by a facile one-step wet-chemical strategy. The content of the main group metal could be tuned in a certain range while maintaining the same one-dimensional ultrathin nanowire morphology, which provided a large surface area and many more active sites. These Pd-based alloys showed a significant improvement in electrocatalytic activity and durability towards the oxygen reaction reaction as well as ethanol oxidation reaction. Optimal activity occurred when a small amount of main group metal existed, which could be explained through calculations by a strong p-d hybridization interaction between the main group metal and Pd to optimize the surface electronic structure collaboratively. Besides, high stability was achieved, which could be ascribed to the increased antioxidant activity of Pd by the main group metal. Furthermore, the low amount of the main group metal atoms also prevented them from leaching out of the crystal lattice.

9.
Medicine (Baltimore) ; 101(47): e31587, 2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36451399

ABSTRACT

Pulmonary hypertension (PH) is a severe form of pulmonary vascular disease that can lead to right heart failure (RHF). Nearly 2-thirds of patients with PH die within 5 years. Studies suggest that a new diuretic medication, called tolvaptan (TLV), can be used to treat PH. However, there is still insufficient evidence to confirm its effectiveness. Therefore, we investigated the role of TLV in patients with PH. This retrospective study included 73 patients with PH hospitalized in Shanghai Pulmonary Hospital between November 2019 and March 2022. All patients received 7.5 to 15.0 mg of TLV for 3 to 21 days starting at admission, in addition to targeted drugs and traditional diuretic therapy. The outcomes included the blood pressure, urine and water intake volumes, electrolyte concentrations, and renal, liver, and cardiac function indexes before and after TLV treatment. In addition, we assessed the clinical symptoms and adverse reactions during the treatment. After TLV treatment, the water intake and urine volumes significantly increased, and body weight, diastolic blood pressure (DBP) and mean arterial pressure significantly decreased. Total bilirubin, direct bilirubin, N-terminal pro-brain natriuretic peptide, and serum uric acid (UA) levels after TLV treatment were significantly lower than before treatment. After TLV treatment, dyspnea significantly improved in 71 of 73 patients, and lower limb edema disappeared in 42 of 53 patients. No obvious adverse reactions occurred during the TLV treatment period. These results suggest that adding TLV to targeted drug and traditional diuretic therapies is effective for patients with PH. However, more data are required to support these findings.


Subject(s)
Hypertension, Pulmonary , Humans , Tolvaptan/therapeutic use , Hypertension, Pulmonary/drug therapy , Retrospective Studies , Uric Acid , China , Diuretics/therapeutic use , Bilirubin
11.
Respir Res ; 23(1): 279, 2022 Oct 10.
Article in English | MEDLINE | ID: mdl-36217131

ABSTRACT

BACKGROUND: Whether cysteinyl-leukotriene receptor antagonists (LTRAs) have a similar antitussive effect to inhaled corticosteroids and long-acting ß2-agonist (ICS/LABA), and that LTRA plus ICS/LABA is superior to LTRAs alone or ICS/LABA alone in treating cough variant asthma (CVA) remain unclear. This study aimed to investigate and compare the efficacy of montelukast alone, budesonide/formoterol alone and the combination of both in the treatment of CVA. METHODS: Ninety-nine CVA patients were assigned randomly in a 1:1:1 ratio to receive montelukast (M group: 10 mg, once daily), budesonide/formoterol (BF group: 160/4.5 µg, one puff, twice daily), or montelukast plus budesonide/formoterol (MBF group) for 8 weeks. The primary outcomes were changes in the cough visual analogue scale (VAS) score, daytime cough symptom score (CSS) and night-time CSS, and the secondary outcomes comprised changes in cough reflex sensitivity (CRS), the percentage of sputum eosinophils (sputum Eos%) and fractional exhaled nitric oxide (FeNO). CRS was presented with the lowest concentration of capsaicin that induced at least 5 coughs (C5). The repeated measure was used in data analysis. RESULTS: The median cough VAS score (median from 6.0 to 2.0 in the M group, 5.0 to 1.0 in the BF group and 6.0 to 1.0 in the MBF group, all p < 0.001), daytime CSS (all p < 0.01) and night-time CSS (all p < 0.001) decreased significantly in all three groups after treatment for 8 weeks. Meanwhile, the LogC5 and sputum Eos% improved significantly in all three groups after 8 weeks treatment (all p < 0.05). No significant differences were found in the changes of the VAS score, daytime and night-time CSSs, LogC5 and sputum Eos% among the three groups from baseline to week 8 (all p > 0.05). The BF and MBF groups also showed significant decreases in FeNO after 8 weeks treatment (p = 0.001 and p = 0.008, respectively), while no significant change was found in the M group (p = 0.457). Treatment with MBF for 8 weeks significantly improved the FEV1/FVC as well as the MMEF% pred and decreased the blood Eos% (all p < 0.05). CONCLUSIONS: Montelukast alone, budesonide/formoterol alone and a combination of both were effective in improving cough symptom, decreasing cough reflex sensitivity and alleviating eosinophilic airway inflammation in patients with CVA, and the antitussive effect and anti-eosinophilic airway inflammation were similar. Trial registration ClinicalTrials.gov, number NCT01404013.


Subject(s)
Antitussive Agents , Asthma , Acetates , Administration, Inhalation , Adrenal Cortex Hormones/therapeutic use , Antitussive Agents/therapeutic use , Asthma/diagnosis , Asthma/drug therapy , Budesonide/therapeutic use , Budesonide, Formoterol Fumarate Drug Combination/therapeutic use , Capsaicin , Cough/diagnosis , Cough/drug therapy , Cyclopropanes , Formoterol Fumarate/therapeutic use , Humans , Inflammation , Leukotriene Antagonists , Quinolines , Sulfides
12.
Nanomaterials (Basel) ; 12(14)2022 Jul 13.
Article in English | MEDLINE | ID: mdl-35889615

ABSTRACT

Electrocatalytic CO2 reduction reaction (CO2RR) is one of the most effective methods to convert CO2 into useful fuels. Introducing defects into metal nanostructures can effectively improve the catalytic activity and selectivity towards CO2RR. This review provides the recent progress on the use of metal nanomaterials with defects towards electrochemical CO2RR and defects engineering methods. Accompanying these ideas, we introduce the structure of defects characterized by electron microscopy techniques as the characterization and analysis of defects are relatively difficult. Subsequently, we present the intrinsic mechanism of how the defects affect CO2RR performance. Finally, to promote a wide and deep study in this field, the perspectives and challenges concerning defects engineering in metal nanomaterials towards CO2RR are put forward.

13.
EMBO J ; 41(16): e110439, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35781818

ABSTRACT

Brown adipose tissue (BAT) functions as a thermogenic organ and is negatively associated with cardiometabolic diseases. N6 -methyladenosine (m6 A) modulation regulates the fate of stem cells. Here, we show that the prostaglandin E2 (PGE2 )-E-prostanoid receptor 3 (EP3) axis was activated during mouse interscapular BAT development. Disruption of EP3 impaired the browning process during adipocyte differentiation from pre-adipocytes. Brown adipocyte-specific depletion of EP3 compromised interscapular BAT formation and aggravated high-fat diet-induced obesity and insulin resistance in vivo. Mechanistically, activation of EP3 stabilized the Zfp410 mRNA via WTAP-mediated m6 A modification, while knockdown of Zfp410 abolished the EP3-induced enhancement of brown adipogenesis. EP3 prevented ubiquitin-mediated degradation of WTAP by eliminating PKA-mediated ERK1/2 inhibition during brown adipocyte differentiation. Ablation of WTAP in brown adipocytes abrogated the protective effect of EP3 overexpression in high-fat diet-fed mice. Inhibition of EP3 also retarded human embryonic stem cell differentiation into mature brown adipocytes by reducing the WTAP levels. Thus, a conserved PGE2 -EP3 axis promotes BAT development by stabilizing WTAP/Zfp410 signaling in a PKA/ERK1/2-dependent manner.


Subject(s)
Adipose Tissue, Brown , Dinoprostone , Adipocytes, Brown/metabolism , Adipose Tissue, Brown/metabolism , Animals , Cell Cycle Proteins/metabolism , Dinoprostone/metabolism , Humans , Methyltransferases/metabolism , Mice , RNA/metabolism , RNA Splicing Factors/metabolism , Receptors, Prostaglandin E, EP3 Subtype , Thermogenesis
15.
Cell Discov ; 8(1): 64, 2022 Jul 05.
Article in English | MEDLINE | ID: mdl-35790738

ABSTRACT

Insulin signals through its receptor to recruit insulin receptor substrates (IRS) and phosphatidylinositol 3-kinase (PI3K) to the plasma membrane for production of phosphatidylinositol-3,4,5-trisphosphate (PIP3) from phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2], which consequently activates protein kinase B (PKB). How insulin signals transduce from the plasma membrane into the cytoplasm is not clearly understood. Here we show that liquid-liquid phase separation (LLPS) plays a critical role in spatiotemporal control of insulin signaling through regulating multiple components including IRS1. Both protein concentration and insulin stimulation can drive the formation of intracellular IRS1 condensates through LLPS. Components including PI(4,5)P2, p85-PI3K and PDK1 are constitutively present in IRS1 condensates whereas production of PIP3 and recruitment of PKB in them are induced by insulin. Thus, IRS1 condensates function as intracellular signal hubs to mediate insulin signaling, whose formation is impaired in insulin resistant cells. Collectively, these data reveal an important function of LLPS in spatiotemporal control of insulin signaling.

16.
Nat Commun ; 13(1): 3972, 2022 07 08.
Article in English | MEDLINE | ID: mdl-35803934

ABSTRACT

Insulin is a potent inducer of mRNA transcription and translation, contributing to metabolic regulation. Insulin has also been suggested to regulate mRNA stability through the processing body (P-body) molecular machinery. However, whether and how insulin regulates mRNA stability via P-bodies is not clear. Here we show that the E3-ligase TRIM24 is a critical factor linking insulin signalling to P-bodies. Upon insulin stimulation, protein kinase B (PKB, also known as Akt) phosphorylates TRIM24 and stimulates its shuttling from the nucleus into the cytoplasm. TRIM24 interacts with several critical components of P-bodies in the cytoplasm, promoting their polyubiquitylation, which consequently stabilises Pparγ mRNA. Inactivation of TRIM24 E3-ligase activity or prevention of its phosphorylation via knockin mutations in mice promotes hepatic Pparγ degradation via P-bodies. Consequently, both knockin mutations alleviate hepatosteatosis in mice fed on a high-fat diet. Our results demonstrate the critical role of TRIM24 in linking insulin signalling to P-bodies and have therapeutic implications for the treatment of hepatosteatosis.


Subject(s)
Insulin , Nuclear Proteins/metabolism , PPAR gamma , Transcription Factors/metabolism , Animals , Mice , PPAR gamma/genetics , Processing Bodies , RNA, Messenger , Ubiquitin-Protein Ligases/metabolism
17.
Front Endocrinol (Lausanne) ; 13: 875798, 2022.
Article in English | MEDLINE | ID: mdl-35832421

ABSTRACT

Background: The aim of this study was to explore the risk factors for early spontaneous abortion (ESA) in fresh- and frozen-embryo transfers. Methods: This retrospective cohort study comprised a total of 35,076 patients, including 15,557 women in the fresh-embryo transfer group and 19,519 women in the frozen-embryo transfer group from January 2016 to December 2020. The primary outcome of this study was ESA, which we defined as the termination of embryonic development before 12 weeks of pregnancy (i.e., an early abortion after artificial multi-fetal pregnancy reduction was excluded). Results: In the 35,076 ART transfer cycles, the incidence of ESA was 5.77% (2023/35,076), and the incidence rates for ESA in fresh and frozen cycles were 4.93% (767 of 15,557) and 6.43% (1,256 of 19,519), respectively. Using a multivariate logistic regression analysis model, maternal age, body mass index (BMI), and number of embryos transferred were independent predictors for ESA. In addition, frozen-thawed transfer was a risk factor for ESA as compared with fresh transfer (OR = 1.207; 95% CI, 1.094-1.331; P = 0.000), blastocyst transfer was risk factor for ESA as compared with cleavage transfer (OR =1.373; 95% CI, 1.186-1.591; P = 0.000 in the total group; OR = 1.291; 95% CI, 1.111-1.499; P = 0.001 in the frozen-transfer group), and unexplained infertility was a protective factor for ESA only in the frozen group (OR = 0.746; 95% CI, 0.565-0.984; P = 0.038). Conclusions: Maternal age, BMI, number of embryos transferred, and frozen-thawed transfer were independent risk factors for ESA in assisted reproductive technology treatment cycles.


Subject(s)
Abortion, Spontaneous , Infertility , Abortion, Spontaneous/epidemiology , Abortion, Spontaneous/etiology , Embryo Transfer/adverse effects , Female , Humans , Infertility/therapy , Pregnancy , Pregnancy Rate , Retrospective Studies
18.
Nat Commun ; 13(1): 4278, 2022 07 25.
Article in English | MEDLINE | ID: mdl-35879328

ABSTRACT

Sarcoplasmic/endoplasmic reticulum calcium ATPase SERCA2 mediates calcium re-uptake from the cytosol into sarcoplasmic reticulum, and its dysfunction is a hallmark of heart failure. Multiple factors have been identified to modulate SERCA2 activity, however, its regulation is still not fully understood. Here we identify a Ral-GTPase activating protein RalGAPα1 as a critical regulator of SERCA2 in cardiomyocytes through its downstream target RalA. RalGAPα1 is induced by pressure overload, and its deficiency causes cardiac dysfunction and exacerbates pressure overload-induced heart failure. Mechanistically, RalGAPα1 regulates SERCA2 through direct interaction and its target RalA. Deletion of RalGAPα1 decreases SERCA2 activity and prolongs calcium re-uptake into sarcoplasmic reticulum. GDP-bound RalA, but not GTP-bound RalA, binds to SERCA2 and activates the pump for sarcoplasmic reticulum calcium re-uptake. Overexpression of a GDP-bound RalAS28N mutant in the heart preserves cardiac function in a mouse model of heart failure. Our findings have therapeutic implications for treatment of heart failure.


Subject(s)
Calcium , Heart Failure , Animals , Mice , Calcium/metabolism , Heart Failure/metabolism , Homeostasis , Myocytes, Cardiac/metabolism , ral GTP-Binding Proteins , Sarcoplasmic Reticulum/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/genetics , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism
19.
Food Chem ; 396: 133645, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-35870244

ABSTRACT

The pungency of Chinese pepper (Zanthoxylum bungeanum) is mainly attributed to the alkylamides contained therein. However, the quantitation and application of these alkylamides are hindered by the lack of commercially available standards. Herein, five alkylamides mainly responsible for the pungency of Z. bungeanum were quantified in 31 batch samples of this plant by high-performance liquid chromatography-mass spectrometry and quantitative analysis of multi-components by a single marker (QAMS) to reveal significant differences in composition distribution according to the sample source. The two methods employed for this purpose, namely an external standard method and QAMS, were shown to be consistent, as the corresponding standardized mean difference was below 5.0%. Thus, the developed QAMS method was concluded to be a promising alternative for the comprehensive and effective quality control of Z. bungeanum from different sources.


Subject(s)
Zanthoxylum , Amides/analysis , Chromatography, High Pressure Liquid , Mass Spectrometry , Plant Extracts/chemistry , Zanthoxylum/chemistry
20.
Front Oncol ; 12: 852454, 2022.
Article in English | MEDLINE | ID: mdl-35558507

ABSTRACT

Sonodynamic therapy (SDT) is a promising treatment method for solid tumors. However, the high interstitial fluid pressure (IFP) in tumor tissues limits the accumulation of sonosensitizers. In the present study, microbubbles ultrasonic cavitation was used to regulate the tumor's IFP and evaluate SDT effects. Rabbit VX2 tumor tissues were treated with microbubbles ultrasonic cavitation. The IFP of different tumor parts before and after cavitation was measured by the WIN method. The accumulation of the sonosensitizers hematoporphyrin monomethyl ether (HMME) in tumor tissues was observed using an ultramicro spectrophotometer and laser confocal microscope. Then, tumor-bearing rabbits were treated with SDT once a week for eight weeks and the therapeutic effect was evaluated. After microbubbles ultrasonic cavitation treatment, the tumor's IFP decreased and the HMME concentration increased. We concluded that microbubbles ultrasonic cavitation can increase HMME accumulation in rabbit VX2 tumors and increase SDT therapeutic effects.

SELECTION OF CITATIONS
SEARCH DETAIL
...