Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 15(17): 20742-20752, 2023 May 03.
Article in English | MEDLINE | ID: mdl-37071603

ABSTRACT

Lung-associated diseases pose a huge threat to human society. Mesenchymal stromal/stem cells (MSCs) hold great promise in the treatment of pulmonary diseases through cell transdifferentiation, paracrine factors, immune regulation, EV secretion, and drug loading. However, intravenous injection of MSCs often resulted in limited lesion tropism and apparent off-target accumulation. The IL-8-CXCR1/2 chemokine axis has been shown to be involved in progression of diseases including lung cancer and acute lung injury (ALI). Herein, we took advantage of this chemokine axis to enhance the homing of MSCs to cancerous and inflammation lesions. The in vivo distribution of MSCs was further monitored real-time by near-infrared region 2 (NIR-II) imaging owing to its outstanding performance in deep tissue imaging. Specifically, a new high-brightness D-A-D NIR-II dye, LJ-858, was synthesized and coprecipitated with a poly(d,l-lactic acid) polymer to form LJ-858 nanoparticles (NPs) with a relative quantum yield of 14.978%. LJ-858 NPs can efficiently label MSCs, and the NIR-II signal can be stable for 14 days without compromising the cell viability. Subcutaneous tracking of labeled MSCs showed no significant decline of NIR-II intensity within 24 h. The enhanced tropism of CXCR2-overexpressing MSCs to A549 tumor cells and the inflamed lung tissue was demonstrated through transwell models. The in vivo and ex vivo NIR-II imaging results further validated the significantly enhanced lesion retention of MSCCXCR2 in the lung cancer and ALI models. Taken together, this work reported a robust strategy to enhance the pulmonary disease tropism by the IL-8-CXCR1/2 chemokine axis. In addition, in vivo distribution of MSCs was successfully visualized by NIR-II imaging, which provides more insights into optimizing protocols for MSC-based therapies in the future.


Subject(s)
Acute Lung Injury , Lung Neoplasms , Mesenchymal Stem Cell Transplantation , Humans , Interleukin-8 , Lung/diagnostic imaging , Lung/pathology , Acute Lung Injury/pathology , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/pathology , Stem Cells , Mesenchymal Stem Cell Transplantation/methods
2.
Small ; 18(49): e2204153, 2022 12.
Article in English | MEDLINE | ID: mdl-36209389

ABSTRACT

The lack of organic fluorophores with high quantum yields (QYs) and low liver retention in the second near-infrared (NIR-II) window has become a bottleneck in the bioimaging field. An approach to address these problems is proposed by encapsulating phosphorylated fluorescent dyes into biodegradable calcium phosphate nanoparticles. First, an NIR-II molecule, LJ-2P, is designed with increased water solubility by introducing two phosphate groups. Meanwhile, LJ-2P co-precipitates with calcium ions to form LJ-2P nanoparticles (NPs). The QYs of LJ-2P NPs in aqueous solution is increased by 36.57-fold to 5.12% compared with that of LJ-2P. This unique phenomenon is named as precipitation-enhanced emission (PEE), whose detailed mechanism is explored by femtosecond transient absorption. It is demonstrated that co-precipitation of LJ-2P with calcium ions changes the micro-environment, which restricts the molecular rotation and reduces the interaction of water molecules, especially the excited-state proton transfer. In addition, due to the pH-sensitive nature, more than 80% of the LJ-2P NPs are metabolized in the liver within 24 h. Based on the excellent optical properties and good biocompatibility, high-contrast vascular visualization and breast tumor detecting are achieved. This strategy can apply to other NIR-II fluorophores to achieve high QYs and low liver retention.


Subject(s)
Calcium , Fluorescent Dyes , Liver , Water
3.
Nano Lett ; 22(16): 6580-6589, 2022 08 24.
Article in English | MEDLINE | ID: mdl-35969167

ABSTRACT

Lipid nanoparticles (LNPs) carrying therapeutic mRNAs hold great promise in treating lung-associated diseases like viral infections, tumors, and genetic disorders. However, because of their thermodynamically unstable nature, traditional LNPs carrying mRNAs need to be stored at low temperatures, which hinders their prevalence. Herein, an efficient lung-specific mRNA delivery platform named five-element nanoparticles (FNPs) is developed in which helper-polymer poly(ß-amino esters) (PBAEs) and DOTAP are used in combination. The new strategy endows FNPs with high stability by increasing the charge repulsion between nanoparticles and the binding force of the aliphatic chains within the nanoparticles. The structure-activity relationship (SAR) shows that PBAEs with E1 end-caps, higher degrees of polymerization, and longer alkyl side chains exhibit higher hit rates. Lyophilized FNP formulations can be stably stored at 4 °C for at least 6 months. Overall, a novel delivery platform with high efficiency, specificity, and stability was developed for advancing mRNA-based therapies for lung-associated diseases.


Subject(s)
Nanoparticles , Polymers , Freeze Drying , Liposomes , Lung , Nanoparticles/chemistry , Polymers/chemistry , RNA, Messenger/genetics
4.
Biomacromolecules ; 23(5): 2116-2125, 2022 05 09.
Article in English | MEDLINE | ID: mdl-35388688

ABSTRACT

Base editing is an emerging genome editing technology with the advantages of precise base corrections, no double-strand DNA breaks, and no need for templates, which provides an alternative treatment option for tumors with point mutations. However, effective nonviral delivery systems for base editors (BEs) are still limited. Herein, a series of poly(beta-amino esters) (PBAEs) with varying backbones, side chains, and end caps were synthesized to deliver plasmids of BEs and sgRNA. Efficient transfection and base editing were achieved in HEK-293T-sEGFP and U87-MG-sEGFP reporter cell lines by using lead PBAEs, which were superior to PEI and lipo3k. A single intratumor injection of PBAE/pDNA nanoparticles induced the robust conversion of stopped-EGFP into EGFP in mice bearing xenograft glioma tumors, indicating successful gene editing by ABEmax-NG. Overall, these results demonstrated that PBAEs can efficiently deliver BEs for tumor gene editing both in vitro and in vivo.


Subject(s)
Nanoparticles , Neoplasms , Animals , Esters , Gene Editing/methods , Humans , Mice , Nanoparticles/chemistry , Polymers , Transfection
5.
Pharmaceutics ; 10(3)2018 Jul 09.
Article in English | MEDLINE | ID: mdl-29987203

ABSTRACT

Kinsenoside (KD), an active compound isolated from Anoectochilus roxburghii, has demonstrated multiple pharmacological activities including hepatoprotection, antihyperliposis, antihyperglycemia, and antiosteoporosis. To the best of our knowledge, there are no available data concerning its preclinical pharmacokinetics and bioavailability in beagle dogs. To support preclinical pharmacokinetic and bioavailability study, a reliable LC-MS/MS method was developed for KD concentration measurements in beagle dog plasma. The chromatographic separation was achieved on a Waters Atlantis® Hilic Silica column with an optimum mobile phase consisting of 5 mM ammonium acetate in water (pH 3.0 adjusted with acetic acid) and acetonitrile at a flow rate of 0.2 mL/min. Mass spectrometric analyses were carried out by monitoring multiple reaction monitoring transitions at m/z 265.2→102.9 for KD and m/z 174.0→128.0 for l-phenyl-d5-alanine-2,3,3-d3 (IS). The stability of KD in beagle dog whole blood and plasma was systematically evaluated. Lowering the temperature played a more critical role in stabilizing KD than decreasing the pH and adding esterase inhibitors, indicating that the major reason for instability of KD was probably due to chemical hydrolysis rather than esterase-mediated degradation. The currently developed method was validated and applied to a pharmacokinetic and bioavailability study of KD in beagle dogs following oral administration at a dose of 3 mg/kg. The absolute oral bioavailability for KD was determined to be 27.6%. Compared with typical glycosides, KD has a better bioavailability and is suitable for developing an oral dosage form.

SELECTION OF CITATIONS
SEARCH DETAIL
...