Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 88
Filter
Add more filters











Publication year range
1.
Bioconjug Chem ; 35(9): 1417-1428, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39225485

ABSTRACT

Electrostatic self-assembly between negatively charged nucleic acids and cationic materials is the basis for the formulation of the delivery systems. Nevertheless, structural disintegration occurs because their colloidal stabilities are frequently insufficient in a hostile biological environment. To overcome the sequential biological barriers encountered during transcellular gene delivery, we attempted to use in situ polymerization onto plasmid DNA (pDNA) with a variety of functional monomers, including N-(3-aminopropyl)methacrylate, (aminopropyl)methacrylamide hydrochloride, 1-vinylimidazole, and 2-methacryloyloxyethylphosphorylcholine and N,N'-bis(acryloyl) cystamine. The covalently linked monomers could polymerize into a network structure on top of pDNA, providing excellent structural stability. Additionally, the significant proton buffering capacity of 1-vinylimidazole is expected to aid in the release of pDNA payloads from acidic and digestive endolysosomes. In addition, the redox-mediated cleavage of the disulfide bond in N,N'-bis(acryloyl)cystamine allows for the selective cleavage of the covalently linked network in the cytosolic microenvironment. This is due to the high intracellular level of glutathione, which promotes the liberation of pDNA payloads in the cell interiors. The proposed polymerization strategies resulted in well-defined nanoscale pDNA delivery systems. Excellent colloidal stabilities were observed, even when incubated in the presence of high concentrations of heparin (10 mg/mL). In contrast, the release of pDNA was confirmed upon incubation in the presence of glutathione, mimicking the intracellular microenvironment. Cell transfection experiments verified their efficient cellular uptake and gene expression activities in the hard-transfected MCF-7 cells. Hence, the polymerization strategy used in the fabrication of covalently linked nonviral gene delivery systems shows promise in creating high-performance gene delivery systems with diverse functions. This could open new avenues in cellular microenvironment engineering.


Subject(s)
DNA , Plasmids , Polymerization , Humans , DNA/administration & dosage , DNA/chemistry , Plasmids/administration & dosage , Gene Transfer Techniques , Methacrylates/chemistry , Transfection/methods , MCF-7 Cells , Phosphorylcholine/chemistry , Phosphorylcholine/analogs & derivatives
2.
J Nanobiotechnology ; 22(1): 413, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39004736

ABSTRACT

Peripheral arterial diseases (PAD) have been reported to be the leading cause for limb amputations, and the current therapeutic strategies including antiplatelet medication or intervene surgery are reported to not clinically benefit the patients with high-grade PAD. To this respect, revascularization based on angiogenetic vascular endothelial growth factor (VEGF) gene therapy was attempted for the potential treatment of critical PAD. Aiming for transcellular delivery of VEGF-encoding plasmid DNA (pDNA), we proposed to elaborate intriguing virus-like DNA condensates, wherein the supercoiled rigid micrometer-scaled plasmid DNA (pDNA) could be regulated in an orderly fashion into well-defined nano-toroids by following a self-spooling process with the aid of cationic block copolymer poly(ethylene glycol)-polylysine at an extraordinary ionic strength (NaCl: 600 mM). Moreover, reversible disulfide crosslinking was proposed between the polylysine segments with the aim of stabilizing these intriguing toroidal condensates. Pertaining to the critical hindlimb ischemia, our proposed toroidal VEGF-encoding pDNA condensates demonstrated high levels of VEGF expression at the dosage sites, which consequently contributed to the neo-vasculature (the particularly abundant formation of micro-vessels in the injected hindlimb), preventing the hindlimb ischemia from causing necrosis at the extremities. Moreover, excellent safety profiles have been demonstrated by our proposed toroidal condensates, as opposed to the apparent immunogenicity of the naked pDNA. Hence, our proposed virus-like DNA condensates herald potentials as gene therapy platform in persistent expressions of the therapeutic proteins, and might consequently be highlighted in the management of a variety of intractable diseases.


Subject(s)
Genetic Therapy , Hindlimb , Ischemia , Plasmids , Polylysine , Vascular Endothelial Growth Factor A , Animals , Genetic Therapy/methods , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/genetics , Ischemia/therapy , Polylysine/chemistry , Polylysine/analogs & derivatives , Mice , Polyethylene Glycols/chemistry , Male , Humans , Neovascularization, Physiologic , DNA/chemistry , Peripheral Arterial Disease/therapy
3.
ACS Appl Mater Interfaces ; 16(27): 34620-34631, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38934519

ABSTRACT

Polyplexes are required to be equipped with multiple functionalities to accomplish adequate structure stability and gene transfection efficacy for gene therapy. Herein, a 4-carboxy-3-fluorophenylboronic acid (FPBA)-functionalized block copolymer of PEG-b-PAsp(DET/FBA) and PAsp(DET/FBA) (abbreviated as PB and HB) was synthesized and applied for engineering functional polyplex micelles (PMs) through ionic complexation with pDNA followed by strategic cross-linking with nordihydroguaiaretic acid (NDGA) in respect to the potential linkage of polyphenol and FPBA moieties. In relation to polyplex micelles void of cross-linking, the engineered multifunctional polyplex micelles (PBHBN-PMs) were determined to possess improved structural tolerability against the exchange reaction with charged species. Besides, the FPBA/NDGA cross-linking appeared to be selectively cleaved in the acidic endosomal compartments but not the neutral milieu. Furthermore, the PBHB-PMs with the optimal FPBA/NDGA cross-linking degree were identified to possess appreciable cellular uptake and endosomal escape activities, eliciting a significantly high level of gene expression relative to P-PMs and PB-PMs. Eventually, in vivo antitumor therapy by our proposed multifunctional PMs appeared to be capable of facilitating expression of the antiangiogenic genomic payloads (sFlt-1 pDNA) via systemic administration. The enriched antiangiogenic sFlt-1 in the tumors could silence the activities of angiogenic cytokines for the inhibited neo-vasculature and the suppressed growth of orthotopic 4T1 tumors. Of note, the persistent expression of the antiangiogenic sFlt-1 is also presumed to migrate into the blood circulation, thereby accounting for an overall antiangiogenic environment in preventing the potential pulmonary metastasis. Hence, our elaborated multifaceted PMs inspired fascinating potential as an intriguing gene delivery system for the treatment of clinical solid tumors and metastasis.


Subject(s)
Boronic Acids , Genetic Therapy , Masoprocol , Micelles , Animals , Boronic Acids/chemistry , Mice , Humans , Masoprocol/chemistry , Masoprocol/pharmacology , Female , Cell Line, Tumor , Mice, Inbred BALB C , Neovascularization, Pathologic/drug therapy , Angiogenesis Inhibitors/chemistry , Angiogenesis Inhibitors/pharmacology
4.
Acta Biomater ; 183: 278-291, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38838905

ABSTRACT

Anti-angiogenesis has emerged a promising strategy against colorectal cancer (CRC). However, the efficacy of anti-angiogenic therapy is greatly compromised by the up-regulated autophagy levels resulting from the evolutionary resistance mechanism and the presence of Fusobacterium nucleatum (F. nucleatum) in CRC. Herein, we report a cationic polymer capable of blocking autophagic flux to deliver plasmid DNA (pDNA) encoding soluble FMS-like tyrosine kinase-1 (sFlt-1) for enhanced anti-angiogenic therapy against F. nucleatum-associated CRC. The autophagy-inhibiting cationic polymer, referred to as PNHCQ, is synthesized by conjugating hydroxychloroquine (HCQ) into 3,3'-diaminodipropylamine-pendant poly(ß-benzyl-L-aspartate) (PAsp(Nors)), which can be assembled and electrostatically interacted with sFlt-1 plasmid to form PNHCQ/sFlt-1 polyplexes. Hydrophobic HCQ modification not only boosts transfection efficiency but confers autophagy inhibition activity to the polymer. Hyaluronic acid (HA) coating is further introduced to afford PNHCQ/sFlt-1@HA for improved tumor targeting without compromising on transfection. Consequently, PNHCQ/sFlt-1@HA demonstrates significant anti-tumor efficacy in F. nucleatum-colocalized HT29 mouse xenograft model by simultaneously exerting anti-angiogenic effects through sFlt-1 expression and down-regulating autophagy levels exacerbated by F. nucleatum challenge. The combination of anti-angiogenic gene delivery and overall autophagy blockade effectively sensitizes CRC tumors to anti-angiogenesis, providing an innovative approach for enhanced anti-angiogenic therapy against F. nucleatum-resident CRC. STATEMENT OF SIGNIFICANCE: Up-regulated autophagy level within tumors is considered responsible for the impaired efficacy of clinic antiangiogenic therapy against CRC colonized with pathogenic F. nucleatum. To tackle this problem, an autophagy-inhibiting cationic polymer is developed to enable efficient intracellular delivery of plasmid DNA encoding soluble FMS-like tyrosine kinase-1 (sFlt-1) and enhance anti-angiogenic therapy against F. nucleatum-associated CRC. HA coating that can be degraded by tumor-enriching hyaluronidase is further introduced for improved tumor targeting without compromising transfection efficiency. The well-orchestrated polyplexes achieve considerable tumor accumulation, efficient in vivo transfection, and effectively reinforce the sensitivity of CRC to the sFlt-1-derived anti-angiogenic effects by significantly blocking overall autophagy flux exacerbated by F. nucleatum challenge, thus harvesting robust antitumor outcomes against F. nucleatum-resident CRC.


Subject(s)
Autophagy , Colorectal Neoplasms , Fusobacterium nucleatum , Fusobacterium nucleatum/drug effects , Colorectal Neoplasms/pathology , Colorectal Neoplasms/drug therapy , Animals , Autophagy/drug effects , Humans , Gene Transfer Techniques , Mice, Nude , Mice , Vascular Endothelial Growth Factor Receptor-1/metabolism , Genetic Therapy/methods , Mice, Inbred BALB C , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/pathology , Plasmids , Angiogenesis Inhibitors/pharmacology , Hydroxychloroquine/pharmacology , Fusobacterium Infections/drug therapy , Fusobacterium Infections/complications
5.
ACS Sens ; 9(6): 3367-3376, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38885468

ABSTRACT

Instability is a key challenge for current pH sensors in practical applications, especially in aquatic environments with high biomass and redox substances. Herein, we present a novel approach that uses a highly stable IrOx sensing layer enveloped in a composite film of SPEEK doped with a silicon-stabilized ionic liquid (SP-IrOx). This design mitigates drift due to sensitive layer variations and minimizes interference from complex external conditions. After exhibiting robustness under moderately reducing conditions caused by S2-, I-, and ascorbic acid, the SP-IrOx sensor's efficacy was validated through real-time pH measurements in demanding aquatic settings. These included laboratory algal culture medium, sediment substrates, and mussel aquaculture areas. The sensor sustained accuracy and stability over extended periods of 6-8 days when compared to calibrated commercial electrodes. The deviations from reference samples were minimal, with a variance of no more than 0.03 pH units in mussel aquaculture areas (n = 17) and 0.07 pH units in an algal culture medium (n = 37). As a potentiometric, this solid-state electrode features a compact structure and low energy consumption, making it an economical and low-maintenance solution for precise pH monitoring in diverse challenging environments with high biomass and turbidity.


Subject(s)
Biomass , Hydrogen-Ion Concentration , Electrodes , Animals , Aquaculture , Bivalvia/chemistry
6.
J Colloid Interface Sci ; 672: 350-362, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38850862

ABSTRACT

To overcome the biological barriers in the journey of systemic gene delivery, a multifaceted genomic synthetic nanomedicine was elaborated and strategically equipped with a multiple of intriguing responsiveness. Particularly, core-shell plasmid DNA condensates were created based on polyionic complexation with block copolymer of polyethylene glycol (PEG)-polylysine (PLys), namely, the nanoscaled PLys&pDNA nanoparticle tethered with the biocompatible PEG surroundings. Furthermore, redox-reversible disulfide crosslinking was introduced into PLys&pDNA nanoparticle to accomplish adequate structural stabilities, and thermal-responsive polypropylacrylamide (PNIPAM) was introduced as the secondary intermediate surroundings onto the pre-formulated PLys&pDNA nanoparticle with the aim of preventing the potential enzymatic degradation from the environmental nucleases. Hence, hundreds of times prolonged survival and retention was determined in pertinent to the blood circulation properties. Additionally, the installation of a guide ligand at the distal end of PEG segments was proposed to encourage selective tumor uptake. A linear peptide of GPLGVRG, which is selectively susceptible to digestion by the tumor-enriched matrix metalloproteinase 2 (MMP-2), was used as the linkage between the shell and core. This peptide has been shown to detach the bio-inert PEGylation, resulting in further facilitated cell endocytosis and intracellular trafficking activities. Hence, the precisely defined synthetic nanomedicine, which exhibits desirable characteristics, efficient expression of the therapeutic gene in the affected cells, and contributed to potent therapeutic efficacy in systemic treatment of intractable tumors by encapsulating the anti-angiogenic gene.


Subject(s)
Gene Transfer Techniques , Genetic Therapy , Genomics , Nanomedicine , Neoplasms , Neoplasms/blood supply , Neoplasms/genetics , Neoplasms/therapy , Humans , Tumor Microenvironment , Female , Animals , Mice , Mice, Inbred BALB C , Mice, Nude , Nanoparticles/therapeutic use , Plasmids/genetics , Blood Circulation , Polyethylene Glycols/chemistry , Polylysine/chemistry , DNA/administration & dosage , DNA/chemistry , Oligopeptides/chemistry , Oligopeptides/metabolism , Matrix Metalloproteinase 2/metabolism
7.
Biomaterials ; 311: 122677, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38917704

ABSTRACT

The surface physiochemical properties of nanomedicine play a crucial role in modulating biointerfacial reactions in sequential biological compartments, accordingly accomplishing the desired programmed delivery scenario to intracellular targets. PEGylation, which involves modifying the surface with a layer of poly(ethylene glycol), has been validated as an effective strategy for minimizing adverse biointerfacial interactions. However, it has also been observed to impede cellular uptake and intracellular trafficking activities. To address this dilemma, we propose a dynamic surface chemistry approach that actively prevents non-specific reactions in systemic circulation, while readily facilitating cellular uptake by converting into a highly cytomembrane-adhesive state. Moreover, the surface becomes more adhesive to endolysosomal membranes, enabling translocation into the cytosol. In this study, PEGylated mRNA delivery nanoparticulates were tethered with charge-reversible polymers to create dynamic surroundings through click chemistry. Importantly, the dynamic surroundings exhibited negative charges under physiological conditions (pH 7.4). This property prevented degradation by anionic nucleases and structural disassembly induced by endogenous charged biological species. Consequently, the nanoparticles exhibited appreciable stealth function, effectively managing the first pass effect, leading to prolonged blood retention and improved bioavailabilities at targeted cells. Furthermore, the dynamic surroundings shifted towards relatively positive charges in the tumor microenvironment (pH 6.8). As a result, the nanoparticles were more likely to be taken up by tumors due to their electrostatic affinities towards polyanionic cytomembranes. Eventually, the internalized mRNA nanomedicine transformed responsive to the surrounding microenvironment into highly positive charges within acidic endolysosomes (pH 5.0), exerting explosive disruptive potencies on the endolysosomal structures, thus facilitating translocation of mRNA from the digestive endolysosomes into the targeted cytosol. Notably, the dynamic surroundings also reduced the immunogenicity of naked mRNA due to their stealthy properties and rapid endolysosomal translocation functions. In summary, our proposed unique triple-transformable dynamic surface chemistry provided an intriguing delivery scenario that overcomes sequential biological barriers, contributing to efficient expression of the encapsulated mRNA at targeted tumors.


Subject(s)
Neoplasms , Polyethylene Glycols , RNA, Messenger , RNA, Messenger/genetics , RNA, Messenger/metabolism , Humans , Animals , Neoplasms/therapy , Polyethylene Glycols/chemistry , Nanoparticles/chemistry , Cell Line, Tumor , Mice, Nude , Mice , Mice, Inbred BALB C , Female
8.
Angew Chem Int Ed Engl ; 63(9): e202316487, 2024 02 26.
Article in English | MEDLINE | ID: mdl-38197735

ABSTRACT

The concept of molecular design, integrating diagnostic and therapeutic functions, aligns with the general trend of modern medical advancement. Herein, we rationally designed the smart molecule ER-ZS for endoplasmic reticulum (ER)-targeted diagnosis and treatment in cell and animal models by combining hemicyanine dyes with ER-targeted functional groups (p-toluenesulfonamide). Owing to its ability to target the ER with a highly specific response to viscosity, ER-ZS demonstrated substantial fluorescence turn-on only after binding to the ER, independent of other physiological environments. In addition, ER-ZS, being a small molecule, allows for the diagnosis of nonalcoholic fatty liver disease (NAFLD) via liver imaging based on high ER stress. Importantly, ER-ZS is a type I photosensitizer, producing O2 ⋅- and ⋅OH under light irradiation. Thus, after irradiating for a certain period, the photodynamic therapy inflicted severe oxidative damage to the ER of tumor cells in hypoxic (2 % O2 ) conditions and activated the unique pyroptosis pathway, demonstrating excellent antitumor capacity in xenograft tumor models. Hence, the proposed strategy will likely shed new light on integrating molecular optics for NAFLD diagnosis and cancer therapy.


Subject(s)
Carbocyanines , Neoplasms , Non-alcoholic Fatty Liver Disease , Photochemotherapy , Animals , Humans , Non-alcoholic Fatty Liver Disease/diagnostic imaging , Non-alcoholic Fatty Liver Disease/drug therapy , Pyroptosis , Coloring Agents/metabolism , Viscosity , Liver/metabolism , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Stress , Neoplasms/pathology
9.
Acta Biomater ; 173: 432-441, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37984629

ABSTRACT

Colorectal cancer (CRC) is one of the most prevalent and deadly malignancies that can be influenced by Fusobacterium nucleatum (Fn), a bacterium that promotes tumor development and chemoresistance, resulting in limited therapeutic efficacy. Traditional antibiotics cannot effectively eliminate Fn at tumor site due to issues like biofilm formation, while chemotherapy alone fails to suppress tumor progression. Therefore, the development of new methods to eliminate Fn and promote antitumor efficacy is of great significance for improving the outcome of CRC treatment. Herein, we developed a nanodrug (OPPL) that integrates oleic acid-modified superparamagnetic iron oxide nanoparticles (O-SPIONs) and an amphiphilic polymer (PPL) to deliver the platinum prodrug and antimicrobial lauric acid (LA) for enhancing the treatment of CRC. We demonstrated that OPPL can synergistically enhance antibacterial and biofilm disruption activities against Fn along with the antimicrobial LA by producing reactive oxygen species (ROS) through its peroxidase-like activity. Furthermore, the OPPL nanodrug can increase intracellular ROS, promote lipid peroxides and deplete glutathione, leading to ferroptosis. By combining chemotherapy and induced ferroptosis, the OPPL nanodrug exhibited high cytotoxicity against CRC cells. In vivo studies showed that the OPPL nanodrug could enhance tumor accumulation, enable magnetic resonance imaging, suppresse tumor growth, and inhibit growth of intratumor Fn. These results suggest that OPPL is an effective and promising candidate for the treatment of Fn-infected CRC. STATEMENT OF SIGNIFICANCE: The enrichment of Fusobacterium nucleatum (Fn) in colorectal cancer is reported to exacerbate tumor malignancy and is particularly responsible for chemoresistance. To this respect, we strategically elaborated multifaceted therapeutics, namely OPPL nanodrug, combining oleic acid-modified superparamagnetic iron oxide nanoparticles (O-SPIONs) with a polymer containing a platinum prodrug and antimicrobial lauric acid. The O-SPION components exert distinctive peroxidase-like activity, capable of stimulating Fenton reactions selectively in the tumor microenvironment, consequently accounting for the progressive production of reactive oxygen species. Hence, O-SPIONs have been demonstrated to not only supplement the antimicrobial activities of lauric acid in overcoming Fn-induced chemoresistance but also stimulate potent tumor ferroptosis. Our proposed dual antimicrobial and chemotherapeutic nanodrug provides an appreciable strategy for managing challenging Fn-infected colorectal cancer.


Subject(s)
Anti-Infective Agents , Colorectal Neoplasms , Prodrugs , Humans , Reactive Oxygen Species , Oleic Acid , Platinum , Fusobacterium nucleatum , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Polymers , Magnetic Iron Oxide Nanoparticles , Anti-Bacterial Agents/pharmacology , Peroxidases , Cell Line, Tumor , Tumor Microenvironment
10.
BMC Gastroenterol ; 23(1): 359, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37853349

ABSTRACT

BACKGROUND: Helicobacter pylori (HP) infection is associated with various diseases. Early detection can prevent the onset of illness. We constructed a nomogram to predict groups at high risk of HP infection. METHODS: Patients who underwent regular medical check-ups at hospital in Chaoshan, China from March to September 2022 were randomly allocated to the training and validation cohorts. Risk factors including basic characteristics and lifestyle habits associated with HP infection were analyzed by logistic regression analyses. The independent varieties were calculated and plotted into a nomogram. The nomogram was internally validated by receiver operating characteristic curve, calibration, and decision curve analyses (DCAs). RESULTS: Of the 945 patients, 680 were included in the training cohort and 265 in the validation cohort. 356 patients in training cohort with positive 13 C-UBT results served as the infected group, and 324 without infection were the control group. The multivariate regression analyses showed that the risk factors for HP infection included alcohol consumption (OR = 1.29, 95%CI = 0.78-2.13, P = 0.03), family history of gastric disease (OR = 4.35, 95%CI = 1.47-12.84, P = 0.01), living with an HP-positive individual (OR = 18.09, 95%CI = 10.29-31.82, P < 0.0001), drinking hot tea (OR = 1.58, 95%CI = 1.05-2.48, P = 0.04), and infection status of co-drinkers unknown (OR = 2.29, 95%CI = 1.04-5.06, P = 0.04). However, drinking tea > 3 times per day (OR = 0.56, 95%CI = 0.33-0.95, P = 0.03), using serving chopsticks (OR = 0.30, 95%CI = 0.12-0.49, P < 0.0001) were protective factors for HP infection. The nomogram had an area under the curve (AUC) of 0.85 in the training cohort. The DCA was above the reference line within a large threshold range, indicating that the model was better. The calibration analyses showed the actual occurrence rate was basically consistent with the predicted occurrence rate. The model was validated in the validation cohort, and had a good AUC (0.80), DCA and calibration curve results. CONCLUSIONS: This nomogram, which incorporates basic characteristics and lifestyle habits, is an efficient model for predicting those at high risk of HP infection in the Chaoshan region.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Humans , China/epidemiology , Helicobacter Infections/epidemiology , Life Style , Nomograms , Tea
SELECTION OF CITATIONS
SEARCH DETAIL