Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 620(7975): 898-903, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37532939

ABSTRACT

The abnormal assembly of TAR DNA-binding protein 43 (TDP-43) in neuronal and glial cells characterizes nearly all cases of amyotrophic lateral sclerosis (ALS) and around half of cases of frontotemporal lobar degeneration (FTLD)1,2. A causal role for TDP-43 assembly in neurodegeneration is evidenced by dominantly inherited missense mutations in TARDBP, the gene encoding TDP-43, that promote assembly and give rise to ALS and FTLD3-7. At least four types (A-D) of FTLD with TDP-43 pathology (FTLD-TDP) are defined by distinct brain distributions of assembled TDP-43 and are associated with different clinical presentations of frontotemporal dementia8. We previously showed, using cryo-electron microscopy, that TDP-43 assembles into amyloid filaments in ALS and type B FTLD-TDP9. However, the structures of assembled TDP-43 in FTLD without ALS remained unknown. Here we report the cryo-electron microscopy structures of assembled TDP-43 from the brains of three individuals with the most common type of FTLD-TDP, type A. TDP-43 formed amyloid filaments with a new fold that was the same across individuals, indicating that this fold may characterize type A FTLD-TDP. The fold resembles a chevron badge and is unlike the double-spiral-shaped fold of ALS and type B FTLD-TDP, establishing that distinct filament folds of TDP-43 characterize different neurodegenerative conditions. The structures, in combination with mass spectrometry, led to the identification of two new post-translational modifications of assembled TDP-43, citrullination and monomethylation of R293, and indicate that they may facilitate filament formation and observed structural variation in individual filaments. The structures of TDP-43 filaments from type A FTLD-TDP will guide mechanistic studies of TDP-43 assembly, as well as the development of diagnostic and therapeutic compounds for TDP-43 proteinopathies.


Subject(s)
DNA-Binding Proteins , Frontotemporal Dementia , Frontotemporal Lobar Degeneration , Humans , Citrullination , Cryoelectron Microscopy , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/ultrastructure , Frontotemporal Dementia/metabolism , Frontotemporal Dementia/pathology , Frontotemporal Lobar Degeneration/classification , Frontotemporal Lobar Degeneration/metabolism , Frontotemporal Lobar Degeneration/pathology , Methylation
2.
Zygote ; 31(4): 393-401, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37212062

ABSTRACT

Although ethanol treatment is widely used to activate oocytes, the underlying mechanisms are largely unclear. Roles of intracellular calcium stores and extracellular calcium in ethanol-induced activation (EIA) of oocytes remain to be verified, and whether calcium-sensing receptor (CaSR) is involved in EIA is unknown. This study showed that calcium-free ageing (CFA) in vitro significantly decreased intracellular stored calcium (sCa) and CaSR expression, and impaired EIA, spindle/chromosome morphology and developmental potential of mouse oocytes. Although EIA in oocytes with full sCa after ageing with calcium does not require calcium influx, calcium influx is essential for EIA of oocytes with reduced sCa after CFA. Furthermore, the extremely low EIA rate in oocytes with CFA-downregulated CaSR expression and the fact that inhibiting CaSR significantly decreased the EIA of oocytes with a full complement of CaSR suggest that CaSR played a significant role in the EIA of ageing oocytes. In conclusion, CFA impaired EIA and the developmental potential of mouse oocytes by decreasing sCa and downregulating CaSR expression. Because mouse oocytes routinely treated for activation (18 h post hCG) are equipped with a full sCa complement and CaSR, the present results suggest that, while calcium influx is not essential, CaSR is required for the EIA of oocytes.


Subject(s)
Calcium , Ethanol , Mice , Animals , Calcium/metabolism , Ethanol/pharmacology , Oocytes/physiology , Receptors, Calcium-Sensing/genetics , Receptors, Calcium-Sensing/metabolism , Aging
3.
Aging (Albany NY) ; 14(22): 9186-9199, 2022 11 26.
Article in English | MEDLINE | ID: mdl-36441534

ABSTRACT

Studies suggest that psychological stress on women can impair their reproduction and that postovulatory oocyte aging (POA) might increase the risk of early pregnancy loss and affect offspring's reproductive fitness and longevity. However, whether psychological stress during oocyte development would facilitate POA is unknown but worth exploring to understand the mechanisms by which psychological stress and POA damage oocytes. This study observed effects of female restraint stress during oocyte development (FRSOD) on oocyte resistance to POA. Female mice were restrained for 48 h before superovulation, and they were sacrificed at different intervals after ovulation to recover aging oocytes for analyzing their early and late aged characteristics. The effects of FRSOD on aging oocytes included: (1) increasing their susceptibility to activation stimulus with elevated cytoplasmic calcium; (2) impairing their developmental potential with downregulated expression of development-beneficial genes; (3) facilitating degeneration, cytoplasmic fragmentation and apoptosis; (4) worsening the disorganization of cortical granules and spindle/chromosomes; and (5) impairing redox potential with increased oxidative stress. In conclusion, FRSOD impairs oocyte resistance to POA, so that stressed oocytes become aged significantly quicker than unstressed controls. Thus, couples wishing to achieve pregnancy should take steps to avoid not only fertilization of aged oocytes but also pregestational stressful life events.


Subject(s)
Oocytes , Oogenesis , Female , Mice , Animals , Aging , Ovulation , Oxidative Stress/physiology
4.
eNeuro ; 9(6)2022.
Article in English | MEDLINE | ID: mdl-36635241

ABSTRACT

Alzheimer's Disease (AD) is characterized by the pathologic assembly of amyloid ß (Aß) peptide, which deposits into extracellular plaques, and tau, which accumulates in intraneuronal inclusions. To investigate the link between Aß and tau pathologies, experimental models featuring both pathologies are needed. We developed a mouse model featuring both tau and Aß pathologies by knocking the P290S mutation into murine Mapt and crossing these Mapt P290S knock-in (KI) mice with the App NL-G-F KI line. Mapt P290S KI mice developed a small number of tau inclusions, which increased with age. The amount of tau pathology was significantly larger in App NL-G-F xMapt P290S KI mice from 18 months of age onward. Tau pathology was higher in limbic areas, including hippocampus, amygdala, and piriform/entorhinal cortex. We also observed AT100-positive and Gallyas-Braak-silver-positive dystrophic neurites containing assembled filamentous tau, as visualized by in situ electron microscopy. Using a cell-based tau seeding assay, we showed that Sarkosyl-insoluble brain extracts from both 18-month-old Mapt P290S KI and App NL-G-F xMapt P290S KI mice were seed competent, with brain extracts from double-KI mice seeding significantly more than those from the Mapt P290S KI mice. Finally, we showed that App NL-G-F xMapt P290S KI mice had neurodegeneration in the piriform cortex from 18 months of age. We suggest that App NL-G-F xMapt P290S KI mice provide a good model for studying the interactions of aggregation-prone tau, Aß, neuritic plaques, neurodegeneration, and aging.


Subject(s)
Alzheimer Disease , Animals , Mice , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Brain/metabolism , Disease Models, Animal , Mice, Transgenic , Plaque, Amyloid/pathology , tau Proteins/genetics , tau Proteins/metabolism
5.
J Reprod Dev ; 67(1): 43-51, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33310974

ABSTRACT

It has been reported in recent studies that restraint stress on pregnant mice during the preimplantation stage elevated corticotrophin-releasing hormone (CRH) and glucocorticoid levels in the serum and oviducts; furthermore, CRH and corticosterone (CORT) impacted preimplantation embryos indirectly by triggering the apoptosis of oviductal epithelial cells (OECs) through activation of the Fas system. However, it remains unclear whether TNF-α signaling is involved in CRH- and/or glucocorticoid-induced apoptosis of OECs. In the present study, it was shown that culture with either CRH or CORT induced significant apoptosis of OECs. The culture of OECs with CRH augmented both FasL expression and TNF-α expression. However, culture with CORT increased FasL, but decreased TNF-α, expression significantly. Although knocking down/knocking out FasL expression in OECs significantly ameliorated the proapoptotic effects of both CRH and CORT, knocking down/knocking out TNF-α expression relieved only the proapoptotic effect of CRH but not that of CORT. Taken together, our results demonstrated that CRH-induced OEC apoptosis involved both Fas signaling and TNF-α signaling. Conversely, CORT-induced OEC apoptosis involved only the Fas, but not the TNF-α, signaling pathway. The data obtained are crucial for our understanding of the mechanisms by which various categories of stress imposed on pregnant females impair embryo development, as well as for the development of measures to protect the embryo from the adverse effects of stress.


Subject(s)
Apoptosis/drug effects , Corticosterone/pharmacology , Epithelial Cells/drug effects , Oviducts/drug effects , Animals , Cells, Cultured , Epithelial Cells/physiology , Female , Mice , Mice, Inbred C57BL , Mice, Inbred ICR , Mice, Knockout , Oviducts/cytology , Signal Transduction/drug effects , Signal Transduction/genetics , Tumor Necrosis Factor-alpha/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...