Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 10682, 2024 05 09.
Article in English | MEDLINE | ID: mdl-38724517

ABSTRACT

Choy Sum, a stalk vegetable highly valued in East and Southeast Asia, is characterized by its rich flavor and nutritional profile. Metabolite accumulation is a key factor in Choy Sum stalk development; however, no research has focused on metabolic changes during the development of Choy Sum, especially in shoot tip metabolites, and their effects on growth and flowering. Therefore, in the present study, we used a widely targeted metabolomic approach to analyze metabolites in Choy Sum stalks at the seedling (S1), bolting (S3), and flowering (S5) stages. In total, we identified 493 metabolites in 31 chemical categories across all three developmental stages. We found that the levels of most carbohydrates and amino acids increased during stalk development and peaked at S5. Moreover, the accumulation of amino acids and their metabolites was closely related to G6P, whereas the expression of flowering genes was closely related to the content of T6P, which may promote flowering by upregulating the expressions of BcSOC1, BcAP1, and BcSPL5. The results of this study contribute to our understanding of the relationship between the accumulation of stem tip substances during development and flowering and of the regulatory mechanisms of stalk development in Choy Sum and other related species.


Subject(s)
Flowers , Gene Expression Regulation, Plant , Metabolomics , Flowers/genetics , Flowers/metabolism , Flowers/growth & development , Metabolomics/methods , Gene Expression Profiling , Transcriptome , Hemerocallis/metabolism , Hemerocallis/genetics , Metabolome , Plant Proteins/genetics , Plant Proteins/metabolism , Amino Acids/metabolism , Seedlings/metabolism , Seedlings/growth & development , Seedlings/genetics
2.
Plants (Basel) ; 13(6)2024 Mar 17.
Article in English | MEDLINE | ID: mdl-38592871

ABSTRACT

In flowering Chinese cabbage, early booting is one of the most important characteristics that is linked with quality and production. Through fixed light intensity (280 µmol·m-2·s-1) and fixed intermittent lighting in flowering Chinese cabbage, there was early bolting, bud emergence, and flowering. Moreover, the aboveground fresh weight, blade area, dry weight of blade, and quantification of the leaves in flowering Chinese cabbage were significantly reduced, while the thickness of tillers, tillers height, dry weight of tillers, and tillers weight were significantly increased. The chlorophyll contents and soil-plant analysis and development (SPAD) value decreased in the early stage and increased in the later stage. The nitrate content decreased, while the photosynthetic rate, vitamin C content, soluble sugar content, soluble protein content, phenolic content, and flavonoid content increased, and mineral elements also accumulated. In order to explore the mechanism of intermittent light promoting the early bolting and flowering of '49d' flowering Chinese cabbage, this study analyzed the transcriptional regulation from a global perspective using RNA sequencing. A total of 17,086 differentially expressed genes (DEGs) were obtained and 396 DEGs were selected that were closely related to early bolting. These DEGs were mainly involved in pollen wall assembly and plant circadian rhythm pathways, light action (34 DEGs), hormone biosynthesis and regulation (26 DEGs), development (21 DEGs), and carbohydrate synthesis and transport (6 DEGs). Three hub genes with the highest connectivity were identified through weighted gene co-expression network analysis (WGCNA): BrRVE, BrLHY, and BrRVE1. It is speculated that they may be involved in the intermittent light regulation of early bolting in flowering Chinese cabbage. In conclusion, intermittent light can be used as a useful tool to regulate plant growth structure, increase planting density, enhance photosynthesis, increase mineral accumulation, accelerate growth, and shorten the breeding cycle.

3.
J Hazard Mater ; 468: 133829, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38394894

ABSTRACT

Cadmium (Cd) pollution threatens plant physiological and biochemical activities and crop production. Significant progress has been made in characterizing how nanoparticles affect Cd stress tolerance; however, the molecular mechanism of nZVI nanoparticles in Cd stress remains largely uncharacterized. Plants treated with nZVI and exposed to Cd had increased antioxidant capacity and reduced Cd accumulation in plant tissues. The nZVI treatment differentially affected the expression of genes involved in plant environmental responses, including those associated with the ERF transcription factor. SlEFR1 was upregulated by Cd stress in nZVI-treated plants when compared with the control and the predicted protein-protein interactions suggested SlERF1 interacts with proteins associated with plant hormone signaling pathway and related to stress. Yeast overexpressing SlEFR1 grew faster after Cd exposure and significantly had higher Cd stress tolerance when compared with empty vector controls. These results suggest that nZVI induces Cd stress tolerance by activating SlERF1 expression to improve plant growth and nutrient accumulation. Our study reveals the molecular mechanism of Cd stress tolerance for improved plant growth and will support new research on overcoming Cd stress and improving vegetable crop production.


Subject(s)
Nanoparticles , Solanum lycopersicum , Cadmium/toxicity , Cadmium/chemistry , Iron/chemistry , Solanum lycopersicum/genetics , Antioxidants/metabolism
4.
Int J Mol Sci ; 25(2)2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38255762

ABSTRACT

Far-red light exerts an important regulatory influence on plant growth and development. However, the mechanisms underlying far-red light regulation of morphogenesis and photosynthetic characteristics in blueberry plantlets in vitro have remained elusive. Here, physiological and transcriptomic analyses were conducted on blueberry plantlets in vitro supplemented with far-red light. The results indicated that supplementation with low far-red light, such as 6 µmol m-2 s-1 and 14 µmol m-2 s-1 far-red (6FR and 14FR) light treatments, significantly increased proliferation-related indicators, including shoot length, shoot number, gibberellin A3, and trans-zeatin riboside content. It was found that 6FR and 14 FR significantly reduced chlorophyll content in blueberry plantlets but enhanced electron transport rates. Weighted correlation network analysis (WGCNA) showed the enrichment of iron ion-related genes in modules associated with photosynthesis. Genes such as NAC, ABCG11, GASA1, and Erf74 were significantly enriched within the proliferation-related module. Taken together, we conclude that low far-red light can promote the proliferative capacity of blueberry plantlets in vitro by affecting hormone pathways and the formation of secondary cell walls, concurrently regulating chlorophyll content and iron ion homeostasis to affect photosynthetic capacity.


Subject(s)
Blueberry Plants , Red Light , Photosynthesis , Chlorophyll , Iron , Cell Proliferation
5.
Int J Mol Sci ; 24(20)2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37895176

ABSTRACT

Deciphering drought resistance in crops is crucial for enhancing water productivity. Previous studies have highlighted the significant role of the transcription factor SlHB8 in regulating developmental processes in tomato plants but its involvement in drought resistance remains unclear. Here, gene overexpression (SlHB8-OE) and gene knockout (slhb8) tomato plants were utilized to study the role of SlHB8 in regulating drought resistance. Our findings showed that slhb8 plants exhibited a robust resistant phenotype under drought stress conditions. The stomata of slhb8 tomato leaves displayed significant closure, effectively mitigating the adverse effects of drought stress on photosynthetic efficiency. The slhb8 plants exhibited a decrease in oxidative damage and a substantial increase in antioxidant enzyme activity. Moreover, slhb8 effectively alleviated the degree of photoinhibition and chloroplast damage caused by drought stress. SlHB8 regulates the expression of numerous genes related to photosynthesis (such as SlPSAN, SlPSAL, SlPSBP, and SlTIC62) and stress signal transduction (such as SlCIPK25, SlABA4, and SlJA2) in response to drought stress. Additionally, slhb8 plants exhibited enhanced water absorption capacity and upregulated expression of several aquaporin genes including SlPIP1;3, SlPIP2;6, SlTIP3;1, SlNIP1;2, and SlXIP1;1. Collectively, our findings suggest that SlHB8 plays a negative regulatory role in the drought resistance of tomato plants.


Subject(s)
Drought Resistance , Solanum lycopersicum , Solanum lycopersicum/genetics , Stress, Physiological/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Photosynthesis/genetics , Droughts , Water/metabolism , Plants, Genetically Modified/metabolism , Antioxidants/metabolism , Gene Expression Regulation, Plant
6.
Front Plant Sci ; 14: 1276649, 2023.
Article in English | MEDLINE | ID: mdl-37860244

ABSTRACT

The escalating impact of global warming on crop yield and quality poses a significant threat to future food supplies. Breeding heat-resistant crop varieties holds promise, but necessitates a deeper understanding of the molecular mechanisms underlying plant heat tolerance. Recent studies have shed light on the initial events of heat perception in plants. In this review, we provide a comprehensive summary of the recent progress made in unraveling the mechanisms of heat perception and response in plants. Calcium ion (Ca2+), hydrogen peroxide (H2O2), and nitric oxide (NO) have emerged as key participants in heat perception. Furthermore, we discuss the potential roles of the NAC transcription factor NTL3, thermo-tolerance 3.1 (TT3.1), and Target of temperature 3 (TOT3) as thermosensors associated with the plasma membrane. Additionally, we explore the involvement of cytoplasmic HISTONE DEACETYLASE 9 (HDA9), mRNA encoding the phytochrome-interacting factor 7 (PIF7), and chloroplasts in mediating heat perception. This review also highlights the role of intranuclear transcriptional condensates formed by phytochrome B (phyB), EARLY FLOWERING 3 (ELF3), and guanylate-binding protein (GBP)-like GTPase 3 (GBPL3) in heat perception. Finally, we raise the unresolved questions in the field of heat perception that require further investigation in the future.

7.
Hortic Res ; 10(8): uhad119, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37547730

ABSTRACT

Gibberellin (GA) plays a major role in controlling Brassica rapa stalk development. As an essential negative regulator of GA signal transduction, DELLA proteins may exert significant effects on stalk development. However, the regulatory mechanisms underlying this regulation remain unclear. In this study, we report highly efficient and inheritable mutagenesis using the CRISPR/Cas9 gene editing system in BraPDS (phytoene desaturase) and BraRGL1 (key DELLA protein) genes. We observed a loss-of-function mutation in BraRGL1 due to two amino acids in GRAS domain. The flower bud differentiation and bolting time of BraRGL1 mutants were significantly advanced. The expression of GA-regulatory protein (BraGASA6), flowering related genes (BraSOC1, BraLFY), expansion protein (BraEXPA11) and xyloglucan endotransferase (BraXTH3) genes was also significantly upregulated in these mutants. BraRGL1-overexpressing plants displayed the contrasting phenotypes. BraRGL1 mutants were more sensitive to GA signaling. BraRGL1 interacted with BraSOC1, and the interaction intensity decreased after GA3 treatment. In addition, BraRGL1 inhibited the transcription-activation ability of BraSOC1 for BraXTH3 and BraLFY genes, but the presence of GA3 enhanced the activation ability of BraSOC1, suggesting that the BraRGL1-BraSOC1 module regulates bolting and flowering of B. rapa through GA signal transduction. Thus, we hypothesized that BraRGL1 is degraded, and BraSOC1 is released in the presence of GA3, which promotes the expression of BraXTH3 and BraLFY, thereby inducing stalk development in B. rapa. Further, the BraRGL1-M mutant promoted the flower bud differentiation without affecting the stalk quality. Thus, BraRGL1 can serve as a valuable target for the molecular breeding of early maturing varieties.

8.
Int J Mol Sci ; 24(15)2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37569274

ABSTRACT

Flowering Chinese cabbage (Brassica campestris L. ssp. Chinensis var. utilis Tsen et Lee) is a widely consumed vegetable in southern China with significant economic value. Developing product organs in the flowering Chinese cabbage involves two key processes: bolting and flowering. Nuclear factor Y (NF-Y) is a heterotrimeric transcription factor known for its crucial role in various plant developmental processes. However, there is limited information available on the involvement of this gene family during flowering during Chinese cabbage development. In this study, 49 BcNF-Y genes were identified and characterized along with their physicochemical properties, gene structure, chromosomal location, collinearity, and expression patterns. We also conducted subcellular localization, yeast two-hybrid, and transcriptional activity assays on selected BcNF-Y genes. The findings of this study revealed enhanced expression levels of specific BcNF-Y genes during the stalk development and flowering stages in flowering Chinese cabbage. Notably, BcNF-YA8, BcNF-YB14, BcNF-YB20, and BcNF-YC5 interacted with BcRGA1, a negative regulator of GA signaling, indicating their potential involvement in GA-mediated stalk development. This study provides valuable insights into the role of BcNF-Y genes in flowering Chinese cabbage development and suggests that they are potential candidates for further investigating the key regulators of cabbage bolting and flowering.

9.
Plant Sci ; 335: 111790, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37454820

ABSTRACT

Leaf is the main photosynthetic organ in plants and the primary energy source all along the plant life. Given the beneficial role of leaf rolling in improving photosynthetic efficiency and yield in specific environmental conditions, a better understanding of the factors and molecular mechanisms underlying this process is highly suited. Previously, the SlARF4 knocking out mutant exhibited upward curly leaf showed higher resistance to water deficit which driving us to uncover the function of SlARF4 in regulating the curly leaf formation. In this study, we unraveled the unexplored role of the SlARF4-SlHB8 module of transcription factors in the development of leaf rolling. Both SlARF4 loss-of-function and SlHB8 overexpressing tomato plants exhibited upward-rolled leaves, reflecting the active role of the two genes in controlling leaf rolling. Dual-luciferase reporter assays and phenotypic analysis of hybrid progenies suggested that SlHB8 acts downstream of SlARF4 in curly leaf formation. SlARF4 and SlHB8 influence the development of leaf palisade tissues via modulating the expression of genes associated with curly leaf formation. SEM analysis revealed no significant differences in leaf epidermal cells between the two leaf-rolling mutants and the wild type, indicating that curly leaves of arf4 and SlHB8-OE do not result from the asymmetric leaf epidermal cell growth. Our data provide novel insight into the molecular mechanism of abaxial-adaxial determination involving SlARF4 and SlHB8 and reveals that leaf rolling operates via different regulation mechanisms in tomato and Arabidopsis model plant.


Subject(s)
Arabidopsis , Solanum lycopersicum , Plant Proteins/genetics , Plant Proteins/metabolism , Solanum lycopersicum/genetics , Phenotype , Transcription Factors/genetics , Transcription Factors/metabolism , Plant Leaves/metabolism , Arabidopsis/metabolism , Gene Expression Regulation, Plant
10.
Curr Issues Mol Biol ; 45(4): 2832-2846, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-37185709

ABSTRACT

The eggplant (Solanum melongena) is a popular vegetable around the world. However, the origin and evolution of eggplant has long been considered complex and unclear, which has become the barrier to improvements in eggplant breeding. Sequencing and comparative analyses of 13 complete chloroplast (cp) genomes of seven Solanum species were performed. Genome sizes were between 154,942 and 156,004 bp, the smallest genome was from S. torvum and the largest from S. macrocapon. Thirteen cp genomes showed highly conserved sequences and GC contents, particularly at the subgenus level. All genes in the 13 genomes were annotated. The cp genomes in this study comprised 130 genes (i.e., 80 protein-coding genes, 8 rRNA genes, and 42 tRNA genes), apart from S. sisymbriifolium, which had 129 (79 protein-coding genes, 8 rRNA genes, and 42 tRNA genes.). The rps16 was absent from the cp genome of S. sisymbriifolium, resulting in a nonsense mutation. Twelve hotspot regions of the cp genome were identified, which showed a series of sequence variations and differed significantly in the inverted repeat/single-copy boundary regions. Furthermore, phylogenetic analysis was conducted using 46 cp genomic sequences to determine interspecific genetic and phylogenetic relationships in Solanum species. All species formed two branches, one of which contained all cultivars of the subgenus Leptostemonum. The cp genome data and phylogenetic analysis provides molecular evidence revealing the origin and evolutionary relationships of S. melongena and its wild relatives. Our findings suggest precise intra- and interspecies relatedness within the subgenus Leptostemonum, which has positive implications for work on improvements in eggplant breeding, particularly in producing heterosis, expanding the source of species variation, and breeding new varieties.

11.
Front Plant Sci ; 14: 1144748, 2023.
Article in English | MEDLINE | ID: mdl-36968362

ABSTRACT

Growth-regulating factors (GRFs) are a unique family of transcription factors with well-characterized functions in plant growth and development. However, few studies have evaluated their roles in the absorption and assimilation of nitrate. In this study, we characterized the GRF family genes of flowering Chinese cabbage (Brassica campestris), an important vegetable crop in South China. Using bioinformatics methods, we identified BcGRF genes and analyzed their evolutionary relationships, conserved motifs, and sequence characteristics. Through genome-wide analysis, we identified 17 BcGRF genes distributed on seven chromosomes. A phylogenetic analysis revealed that the BcGRF genes could be categorized into five subfamilies. RT-qPCR analysis showed that BcGRF1, 8, 10, and 17 expression clearly increased in response to nitrogen (N) deficiency, particularly at 8 h after treatment. BcGRF8 expression was the most sensitive to N deficiency and was significantly correlated with the expression patterns of most key genes related to N metabolism. Using yeast one-hybrid and dual-luciferase assays, we discovered that BcGRF8 strongly enhances the driving activity of the BcNRT1.1 gene promoter. Next, we investigated the molecular mechanism by which BcGRF8 participates in nitrate assimilation and N signaling pathways by expressing it in Arabidopsis. BcGRF8 was localized in the cell nucleus and BcGRF8 overexpression significantly increased the shoot and root fresh weights, seedling root length, and lateral root number in Arabidopsis. In addition, BcGRF8 overexpression considerably reduced the nitrate contents under both nitrate-poor and -rich conditions in Arabidopsis. Finally, we found that BcGRF8 broadly regulates genes related to N uptake, utilization, and signaling. Our results demonstrate that BcGRF8 substantially accelerates plant growth and nitrate assimilation under both nitrate-poor and -rich conditions by increasing the number of lateral roots and the expression of genes involved in N uptake and assimilation, providing a basis for crop improvement.

12.
Front Plant Sci ; 13: 1019884, 2022.
Article in English | MEDLINE | ID: mdl-36438132

ABSTRACT

Gibberellin and cytokinin synergistically regulate the stalk development in flowering Chinese cabbage. KNOX proteins were reported to function as important regulators of the shoot apex to promote meristem activity by synchronously inducing CTK and suppressing GA biosynthesis, while their regulatory mechanism in the bolting and flowering is unknown. In this study, 9 BcKNOX genes were identified and mapped unevenly on 6 out of 10 flowering Chinese cabbage chromosomes. The BcKNOXs were divided into three subfamilies on the basis of sequences and gene structure. The proteins contain four conserved domains except for BcKNATM. Three BcKNOX TFs (BcKNOX1, BcKNOX3, and BcKNOX5) displayed high transcription levels on tested tissues at various stages. The major part of BcKNOX genes showed preferential expression patterns in response to low-temperature, zeatin (ZT), and GA3 treatment, indicating that they were involved in bud differentiation and bolting. BcKNOX1 and BcKNOX5 showed high correlation level with gibberellins synthetase, and CTK metabolic genes. BcKONX1 also showed high correlation coefficients within BcRGA1 and BcRGL1 which are negative regulators of GA signaling. In addition, BcKNOX1 interacted with BcRGA1 and BcRGL1, as confirmed by yeast two-hybrid (Y2H) and biomolecular fluorescence complementation assay (BiFC). This analysis has provided useful foundation for the future functional roles' analysis of flowering Chinese cabbage KNOX genes.

13.
Front Plant Sci ; 13: 1010470, 2022.
Article in English | MEDLINE | ID: mdl-36352860

ABSTRACT

Glycine-rich proteins (GRPs) are a large family of proteins that play vital roles in cell wall remodeling, metabolism and development, and abiotic stress response. Although the functions of GRPs in cell wall remodeling have been extensively characterized, only a few studies have explored their effects on chlorophyll metabolism and hormone response. Accordingly, we aimed to determine the molecular mechanism of BcGRP23 and its role in chlorophyll metabolism and the BRI1-EMS-SUPPRESSOR 1 (BES1) signaling pathway in flowering Chinese cabbage. The expression levels of BcGRP23 in the leaves and stems gradually decreased with increasing growth and development of flowering Chinese cabbage, while BcGRP23 was barely expressed after flowering. As plant growth continued, the GUS (ß-glucuronidase) stain gradually became lighter in hypocotyls and was largely free of growth points. The petioles and stems of BcGRP23-silenced plants lost their green color, and the contents of chlorophyll a (Chl a) and Chl b were significantly reduced. Further research revealed that the expression levels of chlorophyll degradation-related genes were significantly increased in silenced plants compared with the control; however, the opposite was noted for the BcGRP23-overexpressing lines. The BcGRP23 promoter sequence contains numerous hormone-responsive elements. In fact, the expression of BcGRP23 was upregulated in flowering Chinese cabbage following treatment with the hormones indole-3-acetic acid (IAA), gibberellin (GA), 6-benzylaminopurine (6-BA), methyl jasmonate (MeJA), and brassinosteroid (BR). Treatment with BR led to the most significant upregulation. BES1, in response to BRs, directly activated the BcGRP23 promoter. Overall, BcGRP23 regulated the expression of chlorophyll degradation-related genes, thereby affecting the chlorophyll content. Furthermore, the expression of BcGRP23 was significantly regulated by exogenous BR application and was directly activated by BES1. These findings preliminarily suggest the molecular mechanism and regulatory pathway of BcGRP23 in the growth and development of flowering Chinese cabbage plants and their response to environmental stress.

14.
Hortic Res ; 9: uhac185, 2022.
Article in English | MEDLINE | ID: mdl-36338846

ABSTRACT

Pollen development is crucial for the fruit setting process of tomatoes, but the underlying regulatory mechanism remains to be elucidated. Here, we report the isolation of one HD-Zip III family transcription factor, SlHB8, whose expression levels decreased as pollen development progressed. SlHB8 knockout using CRISPR/Cas9 increased pollen activity, subsequently inducing fruit setting, whereas overexpression displayed opposite phenotypes. Overexpression lines under control of the 35 s and p2A11 promoters revealed that SlHB8 reduced pollen activity by affecting early pollen development. Transmission electron microscopy and TUNEL analyses showed that SlHB8 accelerated tapetum degradation, leading to collapsed and infertile pollen without an intine and an abnormal exine. RNA-seq analysis of tomato anthers at the tetrad stage showed that SlHB8 positively regulates SPL/NZZ expression and the tapetum programmed cell death conserved genetic pathway DYT1-TDF1-AMS-MYB80 as well as other genes related to tapetum and pollen wall development. In addition, DNA affinity purification sequencing, electrophoretic mobility shift assay, yeast one-hybrid assay and dual-luciferase assay revealed SlHB8 directly activated the expression of genes related to pollen wall development. The study findings demonstrate that SlHB8 is involved in tapetum development and degradation and plays an important role in anther development.

15.
Molecules ; 27(18)2022 Sep 07.
Article in English | MEDLINE | ID: mdl-36144541

ABSTRACT

Melatonin (MT) and nitric oxide (NO) in plants can function cooperatively to alleviate salt stress, sodic alkaline stress and immune response, as well as adventitious root formation. The interaction of MT and NO on the nitrate stress tolerance of cucumber seedlings are not well understood. We investigated the effects of exogenous MT, NO donor (SNP) and NO scavenger (cPTIO) on the growth; photosynthesis; characteristics of root morphological; accumulation of mineral elements, endogenous NO, MT, IAA and ABA; and related genes expression in cucumber (Cucumis sativus L. "Jin You No. 1") seedlings grown under high nitrate condition (HN). The results showed that MT and NO independently alleviated the inhibition of growth and photosynthesis capacity of cucumber seedlings under nitrate stress. NO was required for MT to enhance the root activity, root length, lateral root number and the accumulation of calcium, magnesium and iron in the roots of cucumber seedlings grown under nitrate stress. Consistently, the expression of adventitious rootless 1 gene (CsARL1) was modulated. Furthermore, exogenous MT induced accumulation of endogenous MT, NO, indole-3-acetic acid (IAA) and abscisic acid (ABA), mainly within 24 h after treatment, in which MT and NO were further increased at 48 h and 96 h, IAA and ABA were further increased at 16 h in the presence of SNP. In contrast, the accumulation of endogenous IAA, MT and ABA slightly decreased within 24 h, NO significantly decreased at 192 h in the presence of cPTIO. Correspondingly, the expression levels of genes involved in nitrogen metabolism (CsNR1 and CsNR2), MT metabolism (CsT5H, CsSNAT2 and Cs2-ODD33), auxin carriers and response factors (CsAUX1, CsGH3.5, CsARF17), ABA synthesis and catabolism (CsNCED1, CsNCED3 and CsCYP707A1) were upregulated by MT, in which CsNR1, CsNR2, CsAUX1, CsNCED3 and CsT5H were further induced in the presence of SNP in roots of cucumber seedlings. These observations indicated that NO act as a crucial factor in MT, alleviating nitrate stress through regulating the mechanism of root growth in cucumber seedlings.


Subject(s)
Cucumis sativus , Melatonin , Abscisic Acid/metabolism , Abscisic Acid/pharmacology , Benzoates , Calcium/metabolism , Imidazoles , Indoleacetic Acids/metabolism , Iron/metabolism , Magnesium/pharmacology , Melatonin/pharmacology , Minerals/metabolism , Nitrates/metabolism , Nitrates/pharmacology , Nitric Oxide/metabolism , Nitrogen/metabolism , Plant Roots/metabolism , Seedlings
16.
J Integr Plant Biol ; 64(11): 2150-2167, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35980297

ABSTRACT

Malformed fruits depreciate a plant's market value. In tomato (Solanum lycopersicum), fruit malformation is associated with the multi-locule trait, which involves genes regulating shoot apical meristem (SAM) development. The expression pattern of TOPLESS3 (SlTPL3) throughout SAM development prompted us to investigate its functional significance via RNA interference (RNAi) and clustered regularly interspaced short palindromic repeats/CRISPR-associated nuclease 9 (Cas9)-mediated gene editing. Lower SlTPL3 transcript levels resulted in larger fruits with more locules and larger SAMs at the 5 d after germination (DAG5) stage. Differentially expressed genes in the SAM of wild-type (WT) and SlTPL3-RNAi plants, identified by transcriptome deep sequencing (RNA-seq), were enriched in the gibberellin (GA) biosynthesis and plant hormone signaling pathways. Moreover, exogenous auxin and paclobutrazol treatments rescued the multi-locule phenotype, indicating that SlTPL3 affects SAM size by mediating auxin and GA levels in the SAM. Furthermore, SlTPL3 interacted with WUSCHEL (SlWUS), which plays an important role in SAM size maintenance. We conducted RNA-seq and DNA affinity purification followed by sequencing (DAP-seq) analyses to identify the genes regulated by SlTPL3 and SlWUS in the SAM and to determine how they regulate SAM size. We detected 24 overlapping genes regulated by SlTPL3 and SlWUS and harboring an SlWUS-binding motif in their promoters. Furthermore, functional annotation revealed a notable enrichment for functions in auxin transport, auxin signal transduction, and GA biosynthesis. Dual-luciferase assays also revealed that SlTPL3 enhances SlWUS-mediated regulation (repression and activation) of SlPIN3 and SlGA2ox4 transcription, indicating that the SlTPL3-SlWUS module regulates SAM size by mediating auxin distribution and GA levels, and perturbations of this module result in enlarged SAM. These results provide novel insights into the molecular mechanism of SAM maintenance and locule formation in tomato and highlight the SlTPL3-SlWUS module as a key regulator.


Subject(s)
Meristem , Solanum lycopersicum , Meristem/metabolism , Gibberellins/metabolism , Indoleacetic Acids/metabolism , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism
17.
Int J Mol Sci ; 23(13)2022 Jul 03.
Article in English | MEDLINE | ID: mdl-35806416

ABSTRACT

Flowering Chinese cabbage (Brassica campestris L. ssp. Chinensis var. utilis Tsen et Lee) is an important and extensively cultivated vegetable in south China, whose major food product is the stalk. In the process of stalk formation, its initiation and development are regulated by a series of hormonal signals, such as cytokinin and gibberellin. In this study, we analyzed the effects of zeatin (ZT) and gibberellin A3 (GA3), and their interaction, on the bolting of flowering Chinese cabbage. The results indicated that the three-true-leaf spraying of ZT and GA synthesis inhibitor (PAC) inhibited plant height but increased stem diameter. Cytokinin (CTK) synthesis inhibitor (YZJ) and GA3 treatment increased plant height and decreased stem diameter. In addition, ZT and GA3 co-treated plants displayed antagonistic effect. Further, 19 type-B authentic response regulators (ARR-Bs), the positive regulators of cytokinin signal transduction were identified from flowering Chinese cabbage. Comprehensive analysis of phylogeny showed BcARR-Bs clustered into three subfamilies with 10 conserved motifs. Analysis of their expression patterns in different tissues and at various growth stage, and their response to hormone treatment suggest that ARR1-b localized in the nucleus displayed unique highest expression patterns in stem tips, are responsive both to ZT and GA, suggesting a significant role in mediating the crosstalk of ZT and GA in the bolting of flowering Chinese cabbage.


Subject(s)
Brassica , Cytokinins , Brassica/metabolism , Cytokinins/metabolism , Cytokinins/pharmacology , Gene Expression Regulation, Plant , Genes, Plant , Phylogeny , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism
18.
Int J Mol Sci ; 23(7)2022 Mar 22.
Article in English | MEDLINE | ID: mdl-35408819

ABSTRACT

Flowering Chinese cabbage is one of the most economically important stalk vegetables. However, the molecular mechanisms underlying bolting, which is directly related to stalk quality and yield, in this species remain unknown. Previously, we examined five key stem development stages in flowering Chinese cabbage. Here, we identified a gene, BcSOC1 (SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1), in flowering Chinese cabbage using transcriptome analysis, whose expression was positively correlated with bolting. Exogenous gibberellin (GA3) and low-temperature treatments significantly upregulated BcSOC1 and promoted early bolting and flowering. Additionally, BcSOC1 overexpression accelerated early flowering and stem elongation in both Arabidopsis and flowering Chinese cabbage, whereas its knockdown dramatically delayed bolting and flowering and inhibited stem elongation in the latter; the inhibition of stem elongation was more notable than delayed flowering. BcSOC1 overexpression also induced cell expansion by upregulating genes encoding cell wall structural proteins, such as BcEXPA11 (cell wall structural proteins and enzymes) and BcXTH3 (xyloglucan endotransglycosidase/hydrolase), upon exogenous GA3 and low-temperature treatments. Moreover, the length of pith cells was correlated with stem height, and BcSOC1 interacted with BcAGL6 (AGAMOUS-LIKE 6) and BcAGL24 (AGAMOUS-LIKE 24). Thus, BcSOC1 plays a vital role in bolting and stem elongation of flowering Chinese cabbage and may play a novel role in regulating stalk development, apart from the conserved function of Arabidopsis SOC1 in flowering alone.


Subject(s)
Arabidopsis , Brassica , Arabidopsis/genetics , Arabidopsis/metabolism , Brassica/metabolism , China , Flowers , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism
19.
Int J Mol Sci ; 22(24)2021 Dec 12.
Article in English | MEDLINE | ID: mdl-34948140

ABSTRACT

The stem is an important organ in supporting plant body, transporting nutrients and communicating signals for plant growing. However, studies on the regulation of stem development in tomato are rather limited. In our study, we demonstrated that SlHB8 negatively regulated tomato stem development. SlHB8 belongs to homeo domain-leucine zipper Class III gene family transcription factors and expressed in all the organs examined including root, stem, leaves, flower, and fruit. Among these tissues, SlHB8 showed stable high expression level during tomato stem development. Overexpression of SlHB8 gene decreased stem diameter with inhibited xylem width and xylem cell layers, while loss of function of SlHB8gene increased the stem diameter and xylem width. The contents of lignin were decreased both in leaves and stems of SlHB8 overexpression plants. RNA-seq analysis on the stems of wild type and SlHB8 transgenic plants showed that the 116 DEGs (differential expressed genes) with reversible expression profiles in SlHB8-ox and SlHB8-cr plants were significantly enriched in the phenylpropanoid biosynthesis pathway and plant-pathogen pathway which were related to lignin biosynthesis and disease resistance. Meanwhile, the key genes involved in the lignin biosynthesis pathway such as SlCCR (cinnamoyl-CoA reductase), SlCYP73A14/C4H (cinnamate 4-hydroxylase), SlC3H (coumarate 3-hydroxylase) and SlCAD (cinnamoyl alcohol dehydrogenase) were down-regulated in both stem and leaves of SlHB8 overexpression plants, indicating a negative regulatory role of SlHB8 in the lignin biosynthesis and stem development.


Subject(s)
Gene Expression Regulation, Plant , Lignin/biosynthesis , Plant Proteins/metabolism , Plant Stems/growth & development , Solanum lycopersicum/growth & development , Transcription Factors/metabolism , Leucine Zippers , Lignin/genetics , Solanum lycopersicum/genetics , Plant Proteins/genetics , Plant Stems/genetics , Transcription Factors/genetics
20.
Int J Mol Sci ; 22(22)2021 Nov 09.
Article in English | MEDLINE | ID: mdl-34829974

ABSTRACT

Flowering Chinese cabbage (Brassica campestris L. ssp. chinensis var. utilis Tsen et Lee) is an important and extensively cultivated vegetable in south China, and its stalk development is mainly regulated by gibberellin (GA). DELLA proteins negatively regulate GA signal transduction and may play an important role in determining bolting and flowering. Nevertheless, no systematic study of the DELLA gene family has been undertaken in flowering Chinese cabbage. In the present study, we found that the two-true-leaf spraying of gibberellin A3 (GA3) did not promote bolting but did promote flowering, whereas the three-true-leaf spraying of GA3 promoted both bolting and flowering. In addition, we identified five DELLA genes in flowering Chinese cabbage. All five proteins contained DELLA, VHYNP, VHIID, and SAW conserved domains. Protein-protein interaction results showed that in the presence of GA3, all five DELLA proteins interacted with BcGID1b (GA-INSENSITIVE DWARF 1b) but not with BcGID1a (GA-INSENSITIVE DWARF 1a) or BcGID1c (GA-INSENSITIVE DWARF 1c). Their expression analysis showed that the DELLA genes exhibited tissue-specific expression, and their reversible expression profiles responded to exogenous GA3 depending on the treatment stage. We also found that the DELLA genes showed distinct expression patterns in the two varieties of flowering Chinese cabbage. BcRGL1 may play a major role in the early bud differentiation process of different varieties, affecting bolting and flowering. Taken together, these results provide a theoretical basis for further dissecting the DELLA regulatory mechanism in the bolting and flowering of flowering Chinese cabbage.


Subject(s)
Brassica/genetics , Flowers/genetics , Gibberellins/metabolism , Plant Proteins/genetics , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Brassica/growth & development , China , Flowers/growth & development , Gene Expression Regulation, Plant/genetics , Multigene Family/genetics , Plant Leaves/genetics , Receptors, Cell Surface/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...