Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(4): e0297785, 2024.
Article in English | MEDLINE | ID: mdl-38648255

ABSTRACT

OBJECTIVE: To compare the serum levels of brain-derived neurotrophic factor (BDNF) in type 2 diabetes mellitus (T2DM) patients with healthy controls (HC) and evaluate the BDNF levels in T2DM patients with/without cognitive impairment. METHODS: PubMed, EMBASE, and the Cochrane Library databases were searched for the published English literature on BDNF in T2DM patients from inception to December 2022. The BDNF data in the T2DM and HC groups were extracted, and the study quality was evaluated using the Agency for Healthcare Research and Quality. A meta-analysis of the pooled data was conducted using Review Manager 5.3 and Stata 12.0 software. RESULTS: A total of 18 English articles fulfilled with inclusion criteria. The standard mean difference of the serum BDNF level was significantly lower in T2DM than that in the HC group (SMD: -2.04, z = 11.19, P <0.001). Besides, T2DM cognitive impairment group had a slightly lower serum BDNF level compared to the non-cognitive impairment group (SMD: -2.59, z = 1.87, P = 0.06). CONCLUSION: BDNF might be involved in the neuropathophysiology of cerebral damage in T2DM, especially cognitive impairment in T2DM.


Subject(s)
Brain-Derived Neurotrophic Factor , Cognitive Dysfunction , Diabetes Mellitus, Type 2 , Brain-Derived Neurotrophic Factor/blood , Humans , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/complications , Cognitive Dysfunction/blood , Case-Control Studies
2.
Front Genet ; 13: 854712, 2022.
Article in English | MEDLINE | ID: mdl-35646099

ABSTRACT

Background: Nonketotic hyperglycinemia is a metabolic disease with autosomal recessive inheritance due to the glycine cleavage system (GCS) defect leading to the accumulation of glycine that causes severe and fatal neurological symptoms in the neonatal period. Methods: Genomic DNA was extracted from the peripheral blood of the female proband and her family members. The AMT variation was detected in the patient by whole-exome sequencing (WES), and the variant was validated by Sanger sequencing. Results: The WES showed that there were novel compound heterozygous frameshift variations c.977delA (p.Glu326Glyfs*12) and c.982_983insG (p.Ala328Glyfs*22) in exon eight of the AMT gene (NM_000481.4) in the proband. Genetic analysis showed that the former was inherited from the mother, and the latter was inherited from the father. Conclusion: We report the novel compound heterozygous variation of the AMT gene in a Chinese girl with NKH by WES, which has never been reported previously. Our case expanded the AMT gene mutation spectrum, further strengthened the understanding of NKH, and deepened the genetic and clinical heterogeneity of the disease. However, the study of treatment and prognosis is still our future challenge and focus.

3.
Carbohydr Polym ; 247: 116740, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-32829859

ABSTRACT

Pulmonary fibrosis (PF) is a lung disease with highly heterogeneous and mortality rate, but its therapeutic options are now still limited. Corona virus disease 2019 (COVID-19) has been characterized by WHO as a pandemic, and the global number of confirmed COVID-19 cases has been more than 8.0 million. It is strongly supported for that PF should be one of the major complications in COVID-19 patients by the evidences of epidemiology, viral immunology and current clinical researches. The anti-PF properties of naturally occurring polysaccharides have attracted increasing attention in last two decades, but is still lack of a comprehensively understanding. In present review, the resources, structural features, anti-PF activities, and underlying mechanisms of these polysaccharides are summarized and analyzed, which was expected to provide a scientific evidence supporting the application of polysaccharides for preventing or treating PF in COVID-19 patients.


Subject(s)
Betacoronavirus , Biological Products/therapeutic use , Coronavirus Infections/complications , Pandemics , Pneumonia, Viral/complications , Polysaccharides/therapeutic use , Pulmonary Fibrosis/drug therapy , Animals , Antioxidants/pharmacology , Antioxidants/therapeutic use , Bleomycin/toxicity , COVID-19 , Disease Models, Animal , Drug Evaluation, Preclinical , Forkhead Box Protein O3/physiology , Fungi/chemistry , Heterogeneous Nuclear Ribonucleoprotein D0/physiology , Humans , Macrophages/drug effects , Medicine, Chinese Traditional , Mice , Neutrophils/drug effects , Phytotherapy , Plants, Medicinal/chemistry , Polysaccharides/pharmacology , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/etiology , Pulmonary Fibrosis/prevention & control , RNA, Long Noncoding/antagonists & inhibitors , Rats , SARS-CoV-2 , Seaweed/chemistry , Signal Transduction/drug effects , Smad2 Protein/physiology , Smad3 Protein/physiology , Transforming Growth Factor beta1/antagonists & inhibitors
4.
Article in English | MEDLINE | ID: mdl-32328146

ABSTRACT

In Southwestern China, the root of Morinda angustifolia Roxb. has been employed as a folk medicine for treating various types of hepatitis and jaundice. The purpose of this study was to evaluate the hepatoprotective effects of anthraquinones extract from M. angustifolia root (AEMA) in carbon tetrachloride- (CCl4-) induced liver injury in mice and identify the main bioactive components. Results indicated that AEMA pretreatment could significantly, in a dose-dependent manner, attenuate the increased levels of ALT and AST in mice serum induced by CCl4. At doses of 100 and 200 mg/kg, AEMA exhibited significant suppression of the elevated hepatic levels of malondialdehyde (MDA), as well as marked upregulatory effects on the activities of antioxidant enzymes including superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in mice exposed to CCl4. However, AEMA treatment had no effect on the antioxidant enzyme catalase (CAT) or the nonenzymatic antioxidant glutathione (GSH). Furthermore, two anthraquinone constituents were isolated from AEMA and identified as soranjidiol and rubiadin-3-methyl ether. Soranjidiol exhibited similar protective effects to those of AEMA on liver damage induced by CCl4. Overall, our research clearly demonstrated the hepatoprotective effects of the AEMA, and anthraquinones, particularly soranjidiol, should be considered as the main hepatoprotective principles of M. angustifolia. In addition, the underlying mechanism may be, at least in part, related to its antioxidant properties.

SELECTION OF CITATIONS
SEARCH DETAIL
...