Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Nat Nanotechnol ; 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38429492

ABSTRACT

The discovery of ultraconfined polaritons with extreme anisotropy in a number of van der Waals (vdW) materials has unlocked new prospects for nanophotonic and optoelectronic applications. However, the range of suitable materials for specific applications remains limited. Here we introduce tellurite molybdenum quaternary oxides-which possess non-centrosymmetric crystal structures and extraordinary nonlinear optical properties-as a highly promising vdW family of materials for tunable low-loss anisotropic polaritonics. By employing chemical flux growth and exfoliation techniques, we successfully fabricate high-quality vdW layers of various compounds, including MgTeMoO6, ZnTeMoO6, MnTeMoO6 and CdTeMoO6. We show that these quaternary vdW oxides possess two distinct types of in-plane anisotropic polaritons: slab-confined and edge-confined modes. By leveraging metal cation substitutions, we establish a systematic strategy to finely tune the in-plane polariton propagation, resulting in the selective emergence of circular, elliptical or hyperbolic polariton dispersion, accompanied by ultraslow group velocities (0.0003c) and long lifetimes (5 ps). Moreover, Reststrahlen bands of these quaternary oxides naturally overlap that of α-MoO3, providing opportunities for integration. As an example, we demonstrate that combining α-MoO3 (an in-plane hyperbolic material) with CdTeMoO6 (an in-plane isotropic material) in a heterostructure facilitates collimated, diffractionless polariton propagation. Quaternary oxides expand the family of anisotropic vdW polaritons considerably, and with it, the range of nanophotonics applications that can be envisioned.

2.
Proc Natl Acad Sci U S A ; 121(12): e2319465121, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38466854

ABSTRACT

In conventional thin materials, the diffraction limit of light constrains the number of waveguide modes that can exist at a given frequency. However, layered van der Waals (vdW) materials, such as hexagonal boron nitride (hBN), can surpass this limitation due to their dielectric anisotropy, exhibiting positive permittivity along one optic axis and negativity along the other. This enables the propagation of hyperbolic rays within the material bulk and an unlimited number of subdiffractional modes characterized by hyperbolic dispersion. By employing time-domain near-field interferometry to analyze ultrafast hyperbolic ray pulses in thin hBN, we showed that their zigzag reflection trajectories bound within the hBN layer create an illusion of backward-moving and leaping behavior of pulse fringes. These rays result from the coherent beating of hyperbolic waveguide modes but could be mistakenly interpreted as negative group velocities and backward energy flow. Moreover, the zigzag reflections produce nanoscale (60 nm) and ultrafast (40 fs) spatiotemporal optical vortices along the trajectory, presenting opportunities to chiral spatiotemporal control of light-matter interactions. Supported by experimental evidence, our simulations highlight the potential of hyperbolic ray reflections for molecular vibrational absorption nanospectroscopy. The results pave the way for miniaturized, on-chip optical spectrometers, and ultrafast optical manipulation.

3.
Nat Commun ; 15(1): 709, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38267417

ABSTRACT

Anisotropic materials with oppositely signed dielectric tensors support hyperbolic polaritons, displaying enhanced electromagnetic localization and directional energy flow. However, the most reported hyperbolic phonon polaritons are difficult to apply for active electro-optical modulations and optoelectronic devices. Here, we report a dynamic topological plasmonic dispersion transition in black phosphorus via photo-induced carrier injection, i.e., transforming the iso-frequency contour from a pristine ellipsoid to a non-equilibrium hyperboloid. Our work also demonstrates the peculiar transient plasmonic properties of the studied layered semiconductor, such as the ultrafast transition, low propagation losses, efficient optical emission from the black phosphorus's edges, and the characterization of different transient plasmon modes. Our results may be relevant for the development of future optoelectronic applications.

4.
Nat Commun ; 14(1): 6739, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37875483

ABSTRACT

Birefringence is at the heart of photonic applications. Layered van der Waals materials inherently support considerable out-of-plane birefringence. However, funnelling light into their small nanoscale area parallel to its out-of-plane optical axis remains challenging. Thus far, the lack of large in-plane birefringence has been a major roadblock hindering their applications. Here, we introduce the presence of broadband, low-loss, giant birefringence in a biaxial van der Waals materials Ta2NiS5, spanning an ultrawide-band from visible to mid-infrared wavelengths of 0.3-16 µm. The in-plane birefringence Δn ≈ 2 and 0.5 in the visible and mid-infrared ranges is one of the highest among van der Waals materials known to date. Meanwhile, the real-space propagating waveguide modes in Ta2NiS5 show strong in-plane anisotropy with a long propagation length (>20 µm) in the mid-infrared range. Our work may promote next-generation broadband and ultracompact integrated photonics based on van der Waals materials.

5.
Opt Express ; 31(17): 28010-28017, 2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37710864

ABSTRACT

Phonon polaritons (PhPs), collective modes hybridizing photons with lattice vibrations in polar insulators, enable nanoscale control of light. In recent years, the exploration of in-plane anisotropic PhPs has yielded new levels of confinement and directional manipulation of nano-light. However, the investigation of in-plane anisotropic PhPs at the atomic layer limit is still elusive. Here, we report the optical nanoimaging of highly-confined phonon polaritons in atomically-thin nanoribbons of α-MoO3 (5 atomic layers). We show that narrow α-MoO3 nanoribbons as thin as a few atomic layers can support anisotropic PhPs modes with a high confinement ratio (∼133 times smaller wavelength than that of light). The anisotropic PhPs interference fringe patterns in atomic layers are tunable depending on the PhP wavelength via changing the illumination frequency. Moreover, spatial control over the PhPs interference patterns is also achieved by varying the nanostructures' shape or nanoribbon width of atomically-thin α-MoO3. Our work may serve as an empirical reference point for other anisotropic PhPs that approach the thickness limit and pave the way for applications such as atomically integrated nano-photonics and sensing.

6.
Opt Express ; 31(26): 42995-43003, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38178403

ABSTRACT

Polaritons in reduced-dimensional materials, such as nanowire, nanoribbon and rolled nanotube, usually provide novel avenues for manipulating electromagnetic fields at the nanoscale. Here, we theoretically propose and study hyperbolic phonon polaritons (HPhPs) with rolled one-dimensional molybdenum trioxide (MoO3) nanotube structure. We find that the HPhPs in rolled MoO3 nanotubes exhibit low propagation losses and tunable electromagnetic confinement along the rolled direction. By rolling the twisted bilayer MoO3, we successfully achieve a canalized phonon polaritons mode in the rolled nanotube, enabling their propagation in a spiraling manner along the nanotube. Our findings demonstrate the considerable potential of the rolled MoO3 nanotubes as promising platforms for various applications in light manipulation and nanophotonics circuits, including negative refraction, waveguiding and routing at the ultimate scale.

7.
Nano Lett ; 22(24): 10208-10215, 2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36343338

ABSTRACT

α-MoO3, a natural van der Waals (vdWs) material, has received wide attention in nano-optics for supporting highly confined anisotropic phonon polaritons (PhPs) from the mid-infrared to the terahertz region, which opens a new route for manipulating light at the nanoscale. However, its optical loss hinders light manipulation with high efficiency. This work demonstrates that the isotope-enriched Mo element enables ultralow-loss PhPs in the α-MoO3. Raman spectra reveal that the isotope-enriched Mo element in the α-MoO3 allows different optical phonon frequencies by efficiently altering the Reststrahlen band's dispersion. The Mo isotope-enriched α-MoO3 significantly reduces the PhPs' optical loss due to efficient optical coherence, which enhances the propagation length revealed by infrared nanoimaging. These findings suggest that the isotope-enriched α-MoO3 is a new feasible 2D material with an ultralow optical loss for possible high-performance integrated photonics and quantum optics devices.

8.
Nanoscale ; 13(29): 12454-12459, 2021 Aug 07.
Article in English | MEDLINE | ID: mdl-34477610

ABSTRACT

We experimentally and theoretically investigated the propagation and subwavelength coupling of surface plasmons in carbon nanotube pairs (CNTPs). We found two plasmon modes in the Fourier transformed near-field images of CNTPs, while only one propagating plasmon mode in the single carbon nanotube (CNT). Using the finite element method (FEM), we calculated plasmon coupling between two carbon nanotubes. We attributed the observed two plasmon modes to the symmetric and asymmetric coupling of the plasmons between the two CNTs. Using numerical simulation, we further investigated the plasmon coupling strength and found that it is sensitive to the separating distance of CNTs. When the separation is larger than 5 nm, the plasmon coupling attenuates. We show that near-field optical imaging is a feasible way to characterize the plasmon coupling of CNTs, even if the separation of the CNTs is only a few nanometers.

9.
Nature ; 596(7872): 362-366, 2021 08.
Article in English | MEDLINE | ID: mdl-34408329

ABSTRACT

Polaritons in anisotropic materials result in exotic optical features, which can provide opportunities to control light at the nanoscale1-10. So far these polaritons have been limited to two classes: bulk polaritons, which propagate inside a material, and surface polaritons, which decay exponentially away from an interface. Here we report a near-field observation of ghost phonon polaritons, which propagate with in-plane hyperbolic dispersion on the surface of a polar uniaxial crystal and, at the same time, exhibit oblique wavefronts in the bulk. Ghost polaritons are an atypical non-uniform surface wave solution of Maxwell's equations, arising at the surface of uniaxial materials in which the optic axis is slanted with respect to the interface. They exhibit an unusual bi-state nature, being both propagating (phase-progressing) and evanescent (decaying) within the crystal bulk, in contrast to conventional surface waves that are purely evanescent away from the interface. Our real-space near-field imaging experiments reveal long-distance (over 20 micrometres), ray-like propagation of deeply subwavelength ghost polaritons across the surface, verifying long-range, directional and diffraction-less polariton propagation. At the same time, we show that control of the out-of-plane angle of the optic axis enables hyperbolic-to-elliptic topological transitions at fixed frequency, providing a route to tailor the band diagram topology of surface polariton waves. Our results demonstrate a polaritonic wave phenomenon with unique opportunities to tailor nanoscale light in natural anisotropic crystals.

10.
Natl Sci Rev ; 8(12): nwaa282, 2021 Dec.
Article in English | MEDLINE | ID: mdl-35382220

ABSTRACT

The plasmonic response of gold clusters with atom number (N) = 100-70 000 was investigated using scanning transmission electron microscopy-electron energy loss spectroscopy. For decreasing N, the bulk plasmon remains unchanged above N = 887 but then disappears, while the surface plasmon firstly redshifts from 2.4 to 2.3 eV above N = 887 before blueshifting towards 2.6 eV down to N = 300, and finally splitting into three fine features. The surface plasmon's excitation ratio is found to follow N 0.669, which is essentially R 2. An atomically precise evolution picture of plasmon physics is thus demonstrated according to three regimes: classical plasmon (N = 887-70 000), quantum confinement corrected plasmon (N = 300-887) and molecule related plasmon (N < 300).

11.
Adv Mater ; 32(40): e2004120, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32876964

ABSTRACT

A variety of infrared applications rely on semiconductor superlattices, including, notably, the realization of high-power, compact quantum cascade lasers. Requirements for atomically smooth interface and limited lattice matching options set high technical standards for fabricating applicable heterostructure devices. The semiconductor twinning superlattice (TSL) forms in a single compound with periodically spaced twin boundaries and sharp interface junctions and can be grown with convenient synthesis methods. Therefore, employing semiconductor TSL may facilitate the development of optoelectronic applications related to superlattice structures. Here, it is shown that InAs TSL nanowires generate inter-sub-band transition channels due to the band projection and the Bragg-like electron reflection. The findings reveal the physical mechanisms of inter-sub-band transitions in TSL structure and suggest that TSL structures are promising candidates for mid-infrared optoelectronic applications.

12.
Nanoscale ; 12(15): 8188-8193, 2020 Apr 21.
Article in English | MEDLINE | ID: mdl-32253412

ABSTRACT

Hexagonal boron nitride (hBN) supports two types of hyperbolic phonon polaritons (HPPs), whose properties of strong electromagnetic field confinement and low propagation loss have been proposed for various applications in nanophotonics. Conventionally, real-space imaging of HPPs by scattering-type scanning near-field optical microscopy (s-SNOM) with vertical polarization excitation contains both tip and edge launched polariton modes, which leads to hybrid interference fringes. In this work, we symmetrically study the tip and edge excited HPPs in both boron nitride with the natural distribution of boron isotopes (natural hBN) and 11B isotope-enriched boron nitride (99.2% 11B hBN). The intrinsic HPPs excited in 99.2% 11B hBN exhibit a lower damping rate and longer propagation length than that in natural hBN. We experimentally realize a tuning from tip-dominated to edge-dominated excited HPPs by rotating the polarization of incident light. The near-field electric field intensity (NEFI) of edge-excited HPPs Eedge and the angle ß (between the hBN edge and the projective direction of the incident electric field on the hBN plane) present a sine function relationship as Eedge∝|sin ß| under an s-polarized incident light. The NEFI of edge-excited HPPs in 99.2% 11B hBN shows a 10% enhancement compared to natural hBN under the same measurement conditions. Our findings demonstrate an effective approach to reducing phonon polariton damping and manipulating phonon polariton excitation in hBN, which are beneficial for developing HPPs-based nanophotonic applications.

13.
J Am Chem Soc ; 141(50): 19533-19537, 2019 12 18.
Article in English | MEDLINE | ID: mdl-31709792

ABSTRACT

Quantitative morphological evolution is of great importance in nanochemistry. In this work, morphology of silver nanotriangles (AgNTs) is quantitatively evolved under the guidance of DNA. First, intact AgNTs are prepared relying on the protection of horseradish peroxidase. Then different regions of AgNTs are sequentially etched by C-rich DNA, leading to DNA-guided postshaping of AgNTs. In combination with atomically resolved images and theoretical simulation, a model is established to track the postshaping process. Since real-time morphological evolution of AgNTs is determined with spectra, a series of AgNTs with specific corners can be obtained by controlling incubation time. The DNA-guided postshaping is sequence and structure dual-dependent, and a mechanism is proposed based on metal-base interaction, surface energy of faces, and freedom of DNA structure. In addition, the postshaping is further used to design DNA-mediated biosensors. This study provides a precise and quantitative method of controlling morphology of anisotropic metallic nanomaterials.


Subject(s)
DNA/chemistry , Horseradish Peroxidase/metabolism , Metal Nanoparticles/chemistry , Silver/chemistry
14.
Nanoscale ; 11(30): 14113-14117, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31334738

ABSTRACT

Mid-infrared is a spectral region of molecular vibration and rotation modes and thus, it has been widely used in chem/bio analysis. On-chip MIR waveguides combining attenuated total reflection spectroscopy provide an efficient way to minimize equipment size and benefit chemical trace analysis. But, inevitable surface roughness-induced scattering is harmful for waveguide mode propagation in traditional sensors. Two-dimensional materials are natural thin slabs with atomic-scale smooth surfaces and thus could be excellent for building weak surface scattering waveguides. Here, we used near-field microscopy to investigate a waveguide mode of 1T tin diselenide slabs at nanoscale resolution in 5.13-6.57 µm and manipulate the mode strengths and wavelengths by controlling the slab thickness. This work extends two-dimensional materials as building blocks for integrated MIR chips.

15.
Adv Mater ; 30(35): e1802551, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29992734

ABSTRACT

Due to the ability to manipulate photons at nanoscale, plasmonics has become one of the most important branches in nanophotonics. The prerequisites for the technological application of plasmons include high confining ability (λ0 /λp ), low damping, and easy tunability. However, plasmons in typical plasmonic materials, i.e., noble metals, cannot satisfy these three requirements simultaneously and cause a disconnection to modern electronics. Here, the indium arsenide (InAs) nanowire is identified as a material that satisfies all the three prerequisites, providing a natural analogy with modern electronics. The dispersion relation of InAs plasmons is determined using the nanoinfrared imaging technique, and show that their associated wavelengths and damping ratio can be tuned by altering the nanowire diameter and dielectric environment. The InAs plasmons possess advantages such as high confining ability, low loss, and ease of fabrication. The observation of InAs plasmons could enable novel plasmonic circuits for future subwavelength applications.

16.
Adv Mater ; 30(22): e1800367, 2018 May.
Article in English | MEDLINE | ID: mdl-29665105

ABSTRACT

The nontrivial topological origin and pseudospinorial character of electron wavefunctions make edge states possess unusual electronic properties. Twenty years ago, the tight-binding model calculation predicted that zigzag termination of 2D sheets of carbon atoms have peculiar edge states, which show potential application in spintronics and modern information technologies. Although scanning probe microscopy is employed to capture this phenomenon, the experimental demonstration of its optical response remains challenging. Here, the propagating graphene plasmon provides an edge-selective polaritonic probe to directly detect and control the electronic edge state at ambient condition. Compared with armchair, the edge-band structure in the bandgap gives rise to additional optical absorption and strongly absorbed rim at zigzag edge. Furthermore, the optical conductivity is reconstructed and the anisotropic plasmon damping in graphene systems is revealed. The reported approach paves the way for detecting edge-specific phenomena in other van der Waals materials and topological insulators.

17.
Nanoscale ; 10(14): 6288-6293, 2018 Apr 05.
Article in English | MEDLINE | ID: mdl-29577139

ABSTRACT

We realized the real-space imaging of Luttinger-liquid plasmons in semiconducting single-walled carbon nanotubes (s-SWCNTs) and studied the effects of chemical-doping-induced charge carrier density modulation on plasmons. Using scattering-type scanning near-field optical microscopy (s-SNOM), we compared the Luttinger-liquid plasmonic behavior in pre- and post-HNO3-doped SWCNTs. Raman measurements revealed that the physical mechanism is P-type doping. Through HNO3 doping, we effectively increased the charge carrier density in s-SWCNTs and achieved quantum plasmons simultaneously with strong confinement (λ0/λp ≈ 70) and high quality factor (Q ≈ 20). The combination of high quality factor and strong subwavelength confinement in Luttinger-liquid plasmons is critical to the future application of plasmonic devices.

18.
Adv Mater ; 29(38)2017 Oct.
Article in English | MEDLINE | ID: mdl-28833592

ABSTRACT

Interference-free hyperbolic phonon polaritons (HPPs) excited by natural wrinkles in a hexagonal boron nitride (hBN) microcrystal are reported both experimentally and theoretically. Although their geometries are off-resonant with the excitation wavelength, the wrinkles compensate for the large momentum mismatch between photon and phonon polariton, and launch the HPPs without interference. The spatial feature of wrinkles is about 200 nm, which is an order of magnitude smaller than resonant metal antennas at the same excitation wavelength. Compared with phonon polaritons launched by an atomic force microscopy tip, the phonon polaritons launched by wrinkles are interference-free, independent of the launcher geometry, and exhibit a smaller damping rate (γ ≈ 0.028). On the same hBN microcrystal, in situ nanoinfrared imaging of HPPs launched by different mechanisms is performed. In addition, the dispersion of HPPs is modified by changing the dielectric environments of hBN crystals. The wavelength of HPPs is compressed twofold when the substrate is changed from SiO2 to gold. The findings provide insights into the intrinsic properties of hBN-HPPs and demonstrate a new way to launch and control polaritons in van der Waals materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...