Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 35(16)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38154139

ABSTRACT

Preparing Cd3As2, which is a three-dimensional (3D) Dirac semimetal in certain crystal orientation, on Si is highly desirable as such a sample may well be fully compatible with existing Si CMOS technology. However, there is a dearth of such a study regarding Cd3As2films grown on Si showing the chiral anomaly. Here,for the first time, we report the novel preparation and fabrication technique of a Cd3As2(112) film on a Si (111) substrate with a ZnTe (111) buffer layer which explicitly shows the chiral anomaly with a nontrivial Berry's phase ofπ. Despite the Hall carrier density (n3D≈9.42×1017cm-3) of our Cd3As2film, which is almost beyond the limit for the portents of a 3D Dirac semimetal to emerge, we observe large linear magnetoresistance in a perpendicular magnetic field and negative magnetoresistance in a parallel magnetic field. These results clearly demonstrate the chiral magnetic effect and 3D Dirac semimetallic behavior in our silicon-based Cd3As2film. Our tailoring growth of Cd3As2on a conventional substrate such as Si keeps the sample quality, while also achieving a low carrier concentration.

2.
Adv Sci (Weinh) ; 10(14): e2206523, 2023 May.
Article in English | MEDLINE | ID: mdl-36965030

ABSTRACT

Superconductivity remains one of most fascinating quantum phenomena existing on a macroscopic scale. Its rich phenomenology is usually described by the Ginzburg-Landau (GL) theory in terms of the order parameter, representing the macroscopic wave function of the superconducting condensate. The GL theory addresses one of the prime superconducting properties, screening of the electromagnetic field because it becomes massive within a superconductor, the famous Anderson-Higgs mechanism. Here the authors describe another widely-spread type of superconductivity where the Anderson-Higgs mechanism does not work and must be replaced by the Deser-Jackiw-Templeton topological mass generation and, correspondingly, the GL effective field theory must be replaced by an effective topological gauge theory. These superconductors are inherently inhomogeneous granular superconductors, where electronic granularity is either fundamental or emerging. It is shown that the corresponding superconducting transition is a 3D generalization of the 2D Berezinskii-Kosterlitz-Thouless vortex binding-unbinding transition. The binding-unbinding of the line-like vortices in 3D results in the Vogel-Fulcher-Tamman scaling of the resistance near the superconducting transition. The authors report experimental data fully confirming the VFT behavior of the resistance.

3.
Nanotechnology ; 32(15): 155704, 2021 Apr 09.
Article in English | MEDLINE | ID: mdl-33373982

ABSTRACT

The magnetotransport properties of a hybrid InSe/monolayer graphene in a SiC system are systematically studied. Compared to those of its bare graphene counterpart, in InSe/graphene, we can effectively modify the carrier density, mobility, effective mass, and electron-electron (e-e) interactions enhanced by weak disorder. We show that in bare graphene and hybrid InSe/graphene systems, the logarithmic temperature (lnT) dependence of the Hall slope R H = Î´R xy /δB = Î´ρ xy /δB can be used to probe e-e interaction effects at various temperatures even when the measured resistivity does not show a lnT dependence due to strong electron-phonon scattering. Nevertheless, one needs to be certain that the change of R H is not caused by an increase of the carrier density by checking the magnetic field position of the longitudinal resistivity minimum at different temperatures. Given the current challenges in gating graphene on SiC with a suitable dielectric layer, our results suggest that capping a van der Waals material on graphene is an effective way to modify the electronic properties of monolayer graphene on SiC.

SELECTION OF CITATIONS
SEARCH DETAIL
...