Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 946: 174457, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-38969137

ABSTRACT

Ultrafiltration (UF) is widely used in drinking water plants, nevertheless, it still encounters challenges stemming from inevitable membrane fouling caused by natural organic matter (NOM). Herein, this work applied VUV/PS as UF membrane pretreatment and used UV/PS for comparison. VUV/PS system exhibited superior ability in removing NOM compared to UV/PS system. HO and SO4- played crucial roles in the degradation. [SO4-]ss was notably higher than [HO]ss in the systems, yet HO was of greater significance. [HO]ss and [SO4-]ss in the VUV/PS process were remarkably higher than those in the UV/PS process, due to the function of 185 nm photons. VUV/PS pretreatment basically recovered flux and effectively reduced fouling resistance, with better performance than UV/PS. Fouling mechanism was dominated by multiple mechanisms after UV/PS pretreatment, whereas it was transformed into pore blockage after VUV/PS pretreatment. Moreover, the UF effluent quality after VUV/PS pretreatment outperformed that of UV/PS but fell short of that without pretreatment, possibly due to the generation of abundant low MW substances under the action of HO and SO4-. After chlorine disinfection, UV/PS and VUV/PS pretreatments increased the DBPs production and cytotoxicity. Specifically, oxidant PS affected the membrane surface morphology and fouling behaviors, and had no obvious effect on interception performance and mechanical properties. In actual water treatment, VUV/PS and UV/PS pretreatments exhibited excellent performance in alleviating membrane fouling, improving water quality, and reducing DBPs formation and acute toxicity.

2.
NPJ Precis Oncol ; 8(1): 159, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39060379

ABSTRACT

Not all MET exon 14 skipping (METex14) NSCLC patients benefited from MET inhibitors. We hypothesized an inter-tumoral heterogeneity in METex14 NSCLC. Investigations at genomic and transcriptomic level were conducted in METex14 NSCLC samples from stage I-III and recurrent/metastatic patients as discovery and validation cohort. Four molecular subtypes were discovered. MET-Driven subtype, with the worst prognosis, displayed MET overexpression, enrichment of MET-related pathways, and higher infiltration of fibroblast and regulatory T cells. Immune-Activated subtype having the most idea long-term survival, had higher tertiary lymphoid structures, spatial co-option of PD-L1+ cancer cells, and GZMK+ CD8+ T cell. FGFR- and Bypass-Activated subtypes displayed FGFR2 overexpression and enrichments of multiple oncogenic pathways respectively. In the validation cohort, patients with MET-Driven subtype had better response to MET inhibitors than those with MET overexpression. Thus, molecular subtypes of METex14 NSCLC with distinct biological and clinical significance may indicate more precise therapeutic strategies for METex14 NSCLC patients.

3.
Future Oncol ; : 1-10, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39072392

ABSTRACT

Aim ASPEN is a randomized, open-label, Phase III study comparing zanubrutinib and ibrutinib in patients with Waldenström macroglobulinemia (WM). Materials & methods: Patient-reported outcomes were exploratory end points assessed using the EORTC QLQ-C30 and EQ-5D-5L VAS scores. Results: Overall, 201 patients (102 zanubrutinib; 99 ibrutinib) were enrolled. Clinically meaningful differences were observed in diarrhea and nausea/vomiting in both the intent-to-treat population and in patients attaining very good partial response (VGPR) in earlier cycles of treatment, as well as in long-term physical functioning and fatigue in patients achieving VGPR. Conclusion: Treatment with zanubrutinib was associated with greater improvements in health-related quality of life compared with ibrutinib in patients with WM and MYD88 mutations.Clinical Trial Registration: NCT03053440 (ClinicalTrials.gov).


Patient quality of life is importantWhat is this article about? This article talks about a study called the ASPEN trial, which compares two medicines used for treating a rare blood cancer that doctors call Waldenström macroglobulinemia. The medicines are called zanubrutinib (ZAN) and ibrutinib (IBR). They work in the same way, by blocking a protein called Bruton tyrosine kinase. When patients take medicines for an illness, it is important to learn about their physical, social, emotional and mental well-being (quality of life). In this study, we asked patients to fill out questionnaires about their well-being before starting the study treatment for their blood cancer, and again a few times while taking the medication, to see if there were any changes.What were the results of the study? There were two groups of patients. One group took ZAN and the other took IBR. The patients could not choose which medicine they were going to take. Results from both groups of patients were compared. Patients taking ZAN did not feel worse or better about their diarrhea and sickness, but those taking IBR said these symptoms had become worse. Both medicines improved how patients were feeling. However, improvement in tiredness and physical ability was larger in patients taking ZAN than those on IBR, especially for the patients whose cancer was getting better.What do the results mean? For patients with a rare blood cancer in this study, those taking ZAN had a better quality of life than those taking IBR.

4.
J Hazard Mater ; 476: 134966, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38901255

ABSTRACT

Ultrafiltration (UF) is widely used in drinking water plants; however, membrane fouling is unavoidable. Natural organic matter (NOM) is commonly considered as an important pollutant that causes membrane fouling. Herein, we proposed VUV/H2O2 as a UF pretreatment and used UV/H2O2 for comparison. Compared to UV/H2O2, the VUV/H2O2 system presented superior NOM removal. In the VUV/H2O2 system, the steady-state concentration of HO• was approximately twice that in the UV/H2O2 system, which was ascribed to the promoting effect of the 185 nm photons. Specifically, 185 nm photons promoted HO• generation by decomposing mainly H2O at a low H2O2 dose or by decomposing mainly H2O2 at a high H2O2 dose. The VUV/H2O2 pretreatment also demonstrated better membrane fouling mitigation performance than did UV/H2O2. An increase in the H2O2 dose promoted HO• generation, thereby enhancing the performance of NOM degradation and membrane fouling alleviation and shifting the major membrane fouling mechanism from cake filtration to standard blocking. The VUV/H2O2 (0.60 mM) pretreatment effectively reduced disinfection byproducts (DBPs) formation during chlorine disinfection. Additionally, the oxidant H2O2 affected the membrane surface morphology and performance but had no evident effect on the mechanical properties. In actual water treatment, the VUV/H2O2 pretreatment exhibited better performance than the UV/H2O2 pretreatment in easing membrane fouling, ameliorating water quality, and reducing DBPs formation and acute toxicity.


Subject(s)
Disinfection , Hydrogen Peroxide , Ultrafiltration , Ultraviolet Rays , Water Purification , Hydrogen Peroxide/chemistry , Water Purification/methods , Disinfection/methods , Membranes, Artificial , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/chemistry , Disinfectants/toxicity , Disinfectants/chemistry , Chlorine/chemistry , Chlorine/toxicity , Aliivibrio fischeri/drug effects
5.
Microbiol Spectr ; 12(8): e0048324, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-38916356

ABSTRACT

From May to July of 2023, one pig farm in Heyuan city, Guangdong Province of China, suffered severe piglet death and sow reproductive disorders. The common pig viruses and bacteria tested negative. To uncover the possible cause of the disease, a metagenomic analysis was performed in the pooled small intestine samples from three 8-day-old diseased piglets. The results showed that Getah virus (GETV), an RNA virus, might be the potential pathogen that affects pig health. Subsequently, GETV nucleotide was detected in all of the 15 samples collected from three diseased piglets using quantitative reverse transcription PCR, suggesting GETV as the main pathogen of the disease. A GETV strain, designated as GDHYLC23, was successfully isolated using the swine testicle cell line. Sequence analysis showed that the epidemic strain had a unique 32-nucleotide repeat insertion in the 3' noncoding region. Phylogenetic analysis showed that GDHYLC23 belonged to the pandemic group III. The identification of GETV with new variations implies the continuous evolution of the virus, which poses potential threats to the swine industry.IMPORTANCEPig farms are faced with emerging and re-emerging viruses that may cause substantial economic loss. The identification of potentially pathogenic viruses helps to prevent and control the spread of diseases. In this study, by using metagenomic analysis, we found that a neglected virus, GETV with a unique insertion in the genome, was the main pathogen in one pig farm that suffered severe piglet death and sow reproductive disorders. Although the potential impact of such an insertion on viral pathogenicity is unknown, the surveillance of the continuing evolution of GETV in pig farms cannot be ignored.


Subject(s)
Phylogeny , Swine Diseases , Animals , Swine , Swine Diseases/virology , Swine Diseases/epidemiology , China/epidemiology , Metagenomics , Alphavirus/genetics , Alphavirus/isolation & purification , Alphavirus/classification , Genome, Viral/genetics , Farms
6.
BMC Genomics ; 25(1): 535, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38816837

ABSTRACT

BACKGROUND: Setae on the pad lamellae of the Japanese gecko Gekko japonicus (Schlegel, 1836), a vital epidermal derivative, are primarily composed of cornified beta-proteins (CBPs) and play a pivotal role in adhesion and climbing. The amino acid composition of CBPs might be a determining factor influencing their functional properties. However, the molecular mechanisms governed by CBP genes with diverse amino acid compositions in setae development remain unexplored. RESULTS: Based on RNA-seq analyses, this study confirmed that all G. japonicus CBPs (GjCBPs) are involved in setae formation. Cysteine-rich CBPs encoding genes (ge-cprp-17 to ge-cprp-26) and glycine-rich CBPs encoding genes (ge-gprp-17 to ge-gprp-22) were haphazardly selected, with quantitative real-time PCR revealing their expression patterns in embryonic pad lamellae and dorsal epidermis. It is inferred that glycine-rich CBPs are integral to the formation of both dorsal scales and lamellar setae, cysteine-rich CBPs are primarily associated with setae development. Additionally, fluorescence in situ hybridization revealed spatiotemporal differences in the expression of a glycine-rich CBP encoding gene (ge-gprp-19) and a cysteine-rich CBP encoding gene (ge-cprp-17) during dorsal scales and/or lamellar development. CONCLUSIONS: All 66 CBPs are involved in the formation of setae. Glycine-rich CBPs hold a significant role in the development of dorsal scales and lamellar setae, whereas most cysteine-rich CBPs appear to be essential components of G. japonicus setae. Even GjCBPs with similar amino acid compositions may play diverse functions. The clear spatio-temporal expression differences between the glycine-rich and cysteine-rich CBP encoding genes during epidermal scale and/or setae formation were observed. Embryonic developmental stages 39 to 42 emerged as crucial phases for setae development. These findings lay the groundwork for deeper investigation into the function of GjCBPs in the development of G. japonicus setae.


Subject(s)
Cysteine , Glycine , Lizards , Animals , Lizards/genetics , Lizards/metabolism , Glycine/metabolism , Cysteine/metabolism , Gene Expression Regulation, Developmental , Animal Scales/metabolism , Gene Expression Profiling
7.
Ren Fail ; 46(1): 2353334, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38785296

ABSTRACT

Heart failure (HF) constitutes a major determinant of outcome in chronic kidney disease (CKD) patients. The main pattern of HF in CKD patients is preserved ejection fraction (HFpEF), and left ventricular diastolic dysfunction (LVDD) is a frequent pathophysiological mechanism and specific preclinical manifestation of HFpEF. Therefore, exploring and intervention of the factors associated with risk for LVDD is of great importance in reducing the morbidity and mortality of cardiovascular disease (CVD) complications in CKD patients. We designed this retrospective cross-sectional study to collect clinical and echocardiographic data from 339 nondialysis CKD patients without obvious symptoms of HF to analyze the proportion of asymptomatic left ventricular diastolic dysfunction (ALVDD) and its related factors associated with risk by multivariate logistic regression analysis. Among the 339 nondialysis CKD patients, 92.04% had ALVDD. With the progression of CKD stage, the proportion of ALVDD gradually increased. The multivariate logistic regression analysis revealed that increased age (OR 1.237; 95% confidence interval (CI) 1.108-1.381, per year), diabetic nephropathy (DN) and hypertensive nephropathy (HTN) (OR 25.000; 95% CI 1.355-48.645, DN and HTN vs chronic interstitial nephritis), progression of CKD stage (OR 2.785; 95% CI 1.228-6.315, per stage), increased mean arterial pressure (OR 1.154; 95% CI 1.051-1.268, per mmHg), increased urinary protein (OR 2.825; 95% CI 1.484-5.405, per g/24 h), and low blood calcium (OR 0.072; 95% CI 0.006-0.859, per mmol/L) were factors associated with risk for ALVDD in nondialysis CKD patients after adjusting for other confounding factors. Therefore, dynamic monitoring of these factors associated with risk, timely diagnosis and treatment of ALVDD can delay the progression to symptomatic HF, which is of great importance for reducing CVD mortality, and improving the prognosis and quality of life in CKD patients.


Subject(s)
Renal Insufficiency, Chronic , Ventricular Dysfunction, Left , Humans , Female , Male , Middle Aged , Retrospective Studies , Cross-Sectional Studies , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/physiopathology , Ventricular Dysfunction, Left/etiology , Ventricular Dysfunction, Left/physiopathology , Aged , Risk Assessment , Disease Progression , Risk Factors , Echocardiography , Hypertension/complications , Logistic Models , Diabetic Nephropathies/complications , Diabetic Nephropathies/physiopathology , Diastole , Stroke Volume , Asymptomatic Diseases , Hypertension, Renal , Nephritis
8.
J Lipids ; 2024: 5324127, 2024.
Article in English | MEDLINE | ID: mdl-38757060

ABSTRACT

Background: Diabetic retinopathy (DR) is a diabetic microvascular complication and a leading cause of vision loss. However, there is a lack of effective strategies to reduce the risk of DR currently. The present study is aimed at assessing the causal effect of lipid-regulating targets on DR risk using a two-sample Mendelian randomization (MR) study. Method: Genetic variants within or near drug target genes, including eight lipid-regulating targets for LDL-C (HMGCR, PCSK9, and NPC1L1), HDL-C (CETP, SCARB1, and PPARG), and TG (PPARA and LPL), were selected as exposures. The exposure data were obtained from the IEU OpenGWAS project. The outcome dataset related to DR was obtained from the FinnGen research project. Inverse-variance-weighted MR (IVW-MR) was used to calculate the effect estimates by each target. Sensitivity analyses were performed to verify the robustness of the results. Results: There was suggestive evidence that PCSK9-mediated LDL-C levels were positively associated with DR, with OR (95% CI) of 1.34 (1.02-1.77). No significant association was found between the expression of HMGCR- and NPC1L1-mediated LDL-C levels; CETP-, SCARB1-, and PPARG-mediated HDL-C levels; PPARA- and LPL-mediated TG levels; and DR risk. Conclusions: This is the first study to reveal a genetically causal relationship between lipid-regulating drug targets and DR risk. PCSK9-mediated LDL-C levels maybe positively associated with DR risk at the genetic level. This study provides suggestive evidence that PCSK9 inhibition may reduce the risk of DR.

9.
Anal Chem ; 96(23): 9317-9324, 2024 06 11.
Article in English | MEDLINE | ID: mdl-38818541

ABSTRACT

Inaccurate or cumbersome clinical pathogen diagnosis between Gram-positive bacteria (G+) and Gram-negative (G-) bacteria lead to delayed clinical therapeutic interventions. Microelectrode-based electrochemical sensors exhibit the significant advantages of rapid response and minimal sample consumption, but the loading capacity and discrimination precision are weak. Herein, we develop reversible fusion-fission MXene-based fiber microelectrodes for G+/G- bacteria analysis. During the fissuring process, the spatial utilization, loading capacity, sensitivity, and selectivity of microelectrodes were maximized, and polymyxin B and vancomycin were assembled for G+/G- identification. The surface-tension-driven reversible fusion facilitated its reusability. A deep learning model was further applied for the electrochemical impedance spectroscopy (EIS) identification in diverse ratio concentrations of G+ and G- of (1:100-100:1) with higher accuracy (>93%) and gave predictable detection results for unknown samples. Meanwhile, the as-proposed sensing platform reached higher sensitivity toward E. coli (24.3 CFU/mL) and S. aureus (37.2 CFU/mL) in 20 min. The as-proposed platform provides valuable insights for bacterium discrimination and quantification.


Subject(s)
Microelectrodes , Gram-Positive Bacteria/isolation & purification , Gram-Negative Bacteria/isolation & purification , Escherichia coli/isolation & purification , Staphylococcus aureus/isolation & purification , Electrochemical Techniques/instrumentation , Vancomycin/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/analysis , Polymyxin B/chemistry , Polymyxin B/pharmacology , Dielectric Spectroscopy
10.
Redox Biol ; 72: 103129, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38574433

ABSTRACT

AIMS: Doxorubicin is a powerful chemotherapeutic agent for cancer, whose use is limited due to its potential cardiotoxicity. Semaglutide (SEMA), a novel analog of glucagon-like peptide-1 (GLP-1), has received widespread attention for the treatment of diabetes. However, increasing evidence has highlighted its potential therapeutic benefits on cardiac function. Therefore, the objective of this study was to examine the efficacy of semaglutide in ameliorating doxorubicin-induced cardiotoxicity. METHODS AND RESULTS: Doxorubicin-induced cardiotoxicity is an established model to study cardiac function. Cardiac function was studied by transthoracic echocardiography and invasive hemodynamic monitoring. The results showed that semaglutide significantly ameliorated doxorubicin-induced cardiac dysfunction. RNA sequencing suggested that Bnip3 is the candidate gene that impaired the protective effect of semaglutide in doxorubicin-induced cardiotoxicity. To determine the role of BNIP3 on the effect of semaglutide in doxorubicin-induced cardiotoxicity, BNIP3 with adeno-associated virus serotype 9 (AAV9) expressing cardiac troponin T (cTnT) promoter was injected into tail vein of C57/BL6J mice to overexpress BNIP3, specifically in the heart. Overexpression of BNIP3 prevented the improvement in cardiac function caused by semaglutide. In vitro experiments showed that semaglutide, via PI3K/AKT pathway, reduced BNIP3 expression in the mitochondria, improving mitochondrial function. CONCLUSION: Semaglutide ameliorates doxorubicin-induced mitochondrial and cardiac dysfunction via PI3K/AKT pathway, by reducing BNIP3 expression in mitochondria. The improvement in mitochondrial function reduces doxorubicin-mediated cardiac injury and improves cardiac function. Therefore, semaglutide is a potential therapy to reduce doxorubicin-induced acute cardiotoxicity.


Subject(s)
Cardiotoxicity , Doxorubicin , Glucagon-Like Peptides , Membrane Proteins , Animals , Mice , Cardiotoxicity/etiology , Cardiotoxicity/metabolism , Doxorubicin/adverse effects , Membrane Proteins/metabolism , Membrane Proteins/genetics , Glucagon-Like Peptides/pharmacology , Mitochondria/metabolism , Mitochondria/drug effects , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Male , Signal Transduction/drug effects , Mice, Inbred C57BL , Humans
11.
Curr Neurovasc Res ; 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38468527

ABSTRACT

AIMS: We evaluated endogenous melatonin levels in the acute phase of cerebral infarction and explored the impact of possible changes in melatonin levels on the prognosis of patients. METHODS: This study recruited acute ischemic stroke (AIS) patients from the Department of the Second Affiliated Hospital of Soochow University between December 2019 and June 2021, along with healthy control subjects. Salivary melatonin samples were collected from each participant between 7 pm and 10 pm, and fasting plasma was collected the following morning to measure the levels of inflammatory markers. The prognosis was assessed through follow-up three months after discharge. The relationship between melatonin levels and plasma inflammatory markers was assessed, followed by an analysis of the effect of melatonin levels on patient prognosis. RESULTS: The study enrolled a total of 160 participants, including 120 AIS patients aged 50 years or older (61.7% male) and 40 age-matched controls (55.0% male). The AIS group exhibited lower salivary melatonin levels at 19 (P = 0.002), 20 (P < 0.001), 21 (P < 0.001), and 22 (P < 0.001) o'clock, and the average melatonin level was also lower (P < 0.001). Logistic regression analysis models indicated an association between low melatonin levels and poor prognosis. Salivary melatonin levels demonstrated good predictive ability for the prognosis of AIS patients. CONCLUSION: Melatonin levels were lower in AIS patients compared to controls. In addition, lower melatonin levels were associated with a poorer prognosis among AIS patients.

12.
J Hazard Mater ; 470: 134117, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38554519

ABSTRACT

The harmful algal blooms (HABs) can damage the ecological equilibrium of aquatic ecosystems and threaten human health. The bio-degradation of algal by algicidal bacteria is an environmentally friendly and economical approach to control HABs. This study applied an aerobic denitrification synchronization algicidal strain Streptomyces sp. LJH-12-1 (L1) to control HABs. The cell-free filtrate of the strain L1 showed a great algolytic effect on bloom-forming cyanobacterium, Microcystis aeruginosa (M. aeruginosa). The optimal algicidal property of strain L1 was indirect light-dependent algicidal with an algicidal rate of 85.0%. The functional metabolism, light-trapping, light-transfer efficiency, the content of pigments, and inhibition of photosynthesis of M. aeruginosa decreased after the addition of the supernatant of the strain L1 due to oxidative stress. Moreover, 96.05% nitrate removal rate synchronized with algicidal activity was achieved with the strain L1. The relative abundance of N cycling functional genes significantly increased during the strain L1 effect on M. aeruginosa. The algicidal efficiency of the strain L1 in the raw water was 76.70% with nitrate removal efficiency of 81.4%. Overall, this study provides a novel route to apply bacterial strain with the property of denitrification coupled with algicidal activity in treating micro-polluted water bodies.


Subject(s)
Denitrification , Harmful Algal Bloom , Microcystis , Microcystis/metabolism , Nitrogen/metabolism , Streptomyces/metabolism , Nitrates/metabolism , Photosynthesis
13.
J Cell Mol Med ; 28(6): e18176, 2024 03.
Article in English | MEDLINE | ID: mdl-38454800

ABSTRACT

Senescent kidney can lead to the maladaptive repairment and predispose age-related kidney diseases. Here, we explore the renal anti-senescence effect of a known kind of drug, sodium-dependent glucose transporters 2 inhibitor (SGLT2i). After 4 months intragastrically administration with dapagliflozin on senescence-accelerated mouse prone 8 (SAMP8) strain mice, the physiologically effects (lowering urine protein, enhancing glomerular blood perfusion, inhibiting expression of senescence-related biomarkers) and structural changes (improving kidney atrophy, alleviating fibrosis, decreasing glomerular mesangial proliferation) indicate the potential value of delaying kidney senescence of SGLT2i. Senescent human proximal tubular epithelial (HK-2) cells induced by H2 O2 also exhibit lower senescent markers after dapagliflozin treatment. Further mechanism exploration suggests LTBP2 have the great possibility to be the target for SGLT2i to exert its renal anti-senescence role. Dapagliflozin down-regulate the LTBP2 expression in kidney tissues and HK-2 cells with senescent phenotypes. Immunofluorescence staining show SGLT2 and LTBP2 exist colocalization, and protein-docking analysis implies there is salt-bridge formation between them; these all indicate the possibility of weak-interaction between the two proteins. Apart from reducing LTBP2 expression in intracellular area induced by H2 O2 , dapagliflozin also decrease the concentration of LTBP2 in cell culture medium. Together, these results reveal dapagliflozin can delay natural kidney senescence in non-diabetes environment; the mechanism may be through regulating the role of LTBP2.


Subject(s)
Kidney Diseases , Sodium-Glucose Transporter 2 Inhibitors , Mice , Humans , Animals , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Kidney/metabolism , Glucosides/therapeutic use , Benzhydryl Compounds/pharmacology , Benzhydryl Compounds/therapeutic use , Kidney Diseases/metabolism , Latent TGF-beta Binding Proteins
14.
Target Oncol ; 19(2): 277-288, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38416376

ABSTRACT

BACKGROUND: Data from studies looking at both EGFR and ERBB2 exon 20 insertion mutations (-20ins) in the same cohort of patients with non-small cell lung cancer (NSCLC) are limited. OBJECTIVE: The purpose of this study was to analyze EGFR/ERBB2-20ins in all-stage NSCLC patients to reveal their histological and molecular features, and to retrospectively evaluate the results of first-line real-world systemic treatments in patients with advanced-stage disease. PATIENTS AND METHODS: We collected 13,920 formalin-fixed paraffin-embedded NSCLC specimens. Clinicopathological features were recorded and DNA-based next-generation sequencing was performed. First-line systemic treatment data were obtained via chart review. RESULTS: In total, 414 (2.97%) EGFR-20ins cases and 666 (4.78%) ERBB2-20ins cases were identified. Both were more common in women, non-smokers, and patients with adenocarcinoma. The incidence of EGFR/ERBB2-20ins in adenocarcinoma is inversely proportional to the degree of invasion; 77 and 26 variants were detected in EGFR-20ins and ERBB2-20ins cases, respectively. The most common concurrently mutated genes were TP53 and RB1. In invasive adenocarcinoma, lepidic components were more common in EGFR/ERBB2-20ins-alone cases than in those with other concurrent mutated genes. In EGFR-/ERBB2-20ins patients, there was no significant difference in progression-free survival (PFS) or treatment response to first-line systemic treatments in this study. There was no significant difference in PFS or treatment response among patients with different EGFR/ERBB2-20ins variants and those with or without concurrent mutated genes. CONCLUSIONS: EGFR/ERBB2-20ins is more common in early lung adenocarcinoma. EGFR-20ins had more variants. In both cohorts, the results for first-line systemic treatments showed no significant difference.


Subject(s)
Adenocarcinoma , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Female , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Retrospective Studies , Mutagenesis, Insertional , Adenocarcinoma/pathology , Exons , China , Mutation , Receptor, ErbB-2/genetics , ErbB Receptors/genetics
15.
Chemosphere ; 352: 141350, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38309601

ABSTRACT

Excessive phosphorus (P) enters the water bodies via wastewater discharges or agricultural runoff, triggering serious environmental problems such as eutrophication. In contrast, P as an irreplaceable key resource, presents notable supply-demand contradictions due to ineffective recovery mechanisms. Hence, constructing a system that simultaneously reduce P contaminants and effective recycling has profound theoretical and practical implications. Metal element-based adsorbents, including metal (hydro) oxides, layered double hydroxides (LDHs) and metal-organic frameworks (MOFs), exhibit a significant chaperone effect stemming from strong orbital hybridization between their intrinsic Lewis acid sites and P (Lewis base). This review aims to parse the structure-effect relationship between metal element-based adsorbents and P, and explores how to optimize the P removal properties. Special emphasis is given to the formation of the metal-P chemical bond, which not only depends on the type of metal in the adsorbent but also closely relates to its surface activity and pore structure. Then, we delve into the intrinsic mechanisms behind these adsorbents' remarkable adsorption capacity and precise targeting. Finally, we offer an insightful discussion of the prospects and challenges of metal element-based adsorbents in terms of precise material control, large-scale production, P-directed adsorption and effective utilization.


Subject(s)
Phosphorus , Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , Metals , Wastewater , Hydroxides , Adsorption
17.
J Epidemiol Glob Health ; 14(2): 462-469, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38372894

ABSTRACT

BACKGROUND: Poor sleep quality is a global public health concern. This study aimed to identify the risk factors for sleep disorders and clarify their causal effects. METHODS: Data were obtained from the National Health and Nutrition Examination Survey (NHANES) and Mendelian randomization (MR)-Base databases. Baseline characteristics of individuals with and without sleep disorders were compared. A multivariate logistic regression analysis was performed to calculate the effects of each variable on sleep disorders. Causal effects of blood lead levels and hypertension on sleep disorders were assessed using MR analysis. RESULTS: In total, 3660 individuals were enrolled in the study. The prevalence of self-reported sleep disorders was 26.21%. Serum lead level, serum mercury level, serum retinol level, prevalence of hypertension, and daily vigorous work duration were significantly higher for those in the sleep disorders group than the control group. After adjusting for various covariates, the effects of serum lead and hypertension on sleep disorders were stable from logistic regression models 1-4. MR analysis showed that blood lead levels were causally related to the risk of sleep disorders (odds ratio (OR) = 1.09, 95% confidence interval (CI) 1.01-1.17, P = 0.030). There was no causal link between elevated blood pressure and sleep disorders (OR = 0.99, 95% CI 0.94-1.04, P = 0.757). Goodness-of-fit tests and sensitivity analyses were used to verify the reliability of the results. CONCLUSIONS: Blood lead is positively and causally associated with an increased risk of sleep disorders. These findings provide a novel perspective regarding sleep protection. Taking effective measures to reduce lead exposure may significantly improve sleep health.


Subject(s)
Lead , Mendelian Randomization Analysis , Nutrition Surveys , Sleep Wake Disorders , Humans , Lead/blood , Male , Female , Adult , Sleep Wake Disorders/epidemiology , Sleep Wake Disorders/blood , Middle Aged , Risk Factors , Hypertension/epidemiology , Hypertension/blood , Prevalence
18.
ACS Omega ; 9(1): 675-691, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38222664

ABSTRACT

Multicluster fracturing of horizontal wells has evolved into a mature and widely adopted technique for exploiting unconventional oil and gas fields. A well-designed multicluster completion strategy can yield an ideal fracturing outcome, significantly enhancing production rates and potentially delivering substantial economic benefits. Nevertheless, empirical evidence suggests that fractured horizontal wells frequently exhibit pronounced nonuniform production profiles, a prevalent issue stemming from the irregular geometry of propagated fractures. This issue critically constrains production rates. To mitigate the adverse effects of low-uniformity fracture propagation, it is imperative to elucidate the factors influencing uniformity levels and their corresponding patterns. Despite extensive discussions on hydraulic fracture propagation mechanisms and optional factors in hydraulic fracturing engineering, there exists a notable oversight regarding the optimization of perforation parameters to achieve improved fracturing uniformity during well completion procedures. This paper introduces an optimization method for perforation parameters based on a fully coupled pseudo-3D numerical model of multicluster fracturing. The impact patterns of cluster spacing, perforation number, and initial perforation diameter on multifracture propagation results and uniformity levels are thoroughly examined. The multicluster fracturing model, developed using the displacement discontinuous method (DDM), is coupled with material balance, pressure transmission, hole erosion computation, and initiation asynchrony estimation. To quantify the uniformity level of the fracturing result, the modified propagation uniformity index (Ufm) is employed. Simulation results from 20 cases are categorized into six groups based on varied changing patterns of perforation parameters, leading to the identification of five recommendations for optimizing perforation parameters. By implementation of the discussed optimized perforation parameters, successful fracturing outcomes were realized.

20.
Mikrochim Acta ; 191(2): 99, 2024 01 16.
Article in English | MEDLINE | ID: mdl-38228947

ABSTRACT

Xanthine-functionalized molybdenum oxide nanodots (X-MoO3-x NDs) with peroxidase (POD)-like activity were developed for selective, sensitive, and facile colorimetric quantification of xanthine oxidase (XO). Xanthine functionalization can not only be favorable for the successful nanozyme preparation, but also for the specific recognition of XO as well as the simultaneous generation of hydrogen peroxide, which was subsequently transformed into hydroxyl radical to oxidize the chromogenic reagent based on the POD-like catalysis. Under the optimized conditions, the colorimetric biosensing platform was established for XO assay without addition of further substrates, showing good linearity relationship between absorbance difference (ΔA) and XO concentrations in the range 0.05-0.5 U/mL (R2 = 0.998) with a limit of detection (LOD) of 0.019 U/mL. The quantification of XO occurs in 25 min, which is superior to the previously reported and commercial XO assays. The proposed method has been successfully used in the assay of human serum samples, showing its high potential in the field of clinical monitoring.


Subject(s)
Colorimetry , Xanthine Oxidase , Humans , Molybdenum , Antioxidants , Xanthine
SELECTION OF CITATIONS
SEARCH DETAIL