Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
ACS Nano ; 18(20): 12808-12819, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38717026

ABSTRACT

Considerable progress has already been made in sweat sensors based on electrochemical methods to realize real-time monitoring of biomarkers. However, realizing long-term monitoring of multiple targets at the atomic level remains extremely challenging, in terms of designing stable solid contact (SC) interfaces and fully integrating multiple modules for large-scale applications of sweat sensors. Herein, a fully integrated wristwatch was designed using mass-manufactured sensor arrays based on hierarchical multilayer-pore cross-linked N-doped porous carbon coated by reduced graphene oxide (NPCs@rGO-950) microspheres with high hydrophobicity as core SC, and highly selective monitoring simultaneously for K+, Na+, and Ca2+ ions in human sweat was achieved, exhibiting near-Nernst responses almost without forming an interfacial water layer. Combined with computed tomography, solid-solid interface potential diffusion simulation results reveal extremely low interface diffusion potential and high interface capacitance (598 µF), ensuring the excellent potential stability, reversibility, repeatability, and selectivity of sensor arrays. The developed highly integrated-multiplexed wristwatch with multiple modules, including SC, sensor array, microfluidic chip, signal transduction, signal processing, and data visualization, achieved reliable real-time monitoring for K+, Na+, and Ca2+ ion concentrations in sweat. Ingenious material design, scalable sensor fabrication, and electrical integration of multimodule wearables lay the foundation for developing reliable sweat-sensing systems for health monitoring.


Subject(s)
Electrolytes , Graphite , Sweat , Wearable Electronic Devices , Sweat/chemistry , Humans , Graphite/chemistry , Electrolytes/chemistry , Ions/analysis , Calcium/analysis , Sodium/analysis , Sodium/chemistry , Biosensing Techniques/instrumentation , Electrochemical Techniques/instrumentation , Electrochemical Techniques/methods , Potassium/analysis
2.
Anal Chim Acta ; 1306: 342612, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38692793

ABSTRACT

Despite the widespread utilization of variable valence metals in electrochemistry, it is still a formidable challenge to enhance the valence conversion efficiency to achieve excellent catalytic activity without introducing heterophase elements. Herein, the in-situ precipitation of Co particles on Co2VO4 not only enhanced the concentration of oxygen vacancies (Ov) but also generated a greater number of low-valence metals, thereby enabling efficient reduction towards Hg(II). The electroanalysis results demonstrate that the sensitivity of Co/Co2VO4 towards Hg(II) was measured at an impressive value of 1987.74 µA µM-1 cm-2, significantly surpassing previously reported results. Further research reveals that Ov acted as the main adsorption site to capture Hg(II). The redox reactions of Co2+/Co3+ and V3+/V4+ played a synergistic role in the reduction of Hg(II), accompanied by the continuous supply of electrons from zero-valent Co to expedite the valence cycle. The Co/Co2VO4/GCE presented remarkable selectivity towards Hg(II), with excellent stability, reproducibility, and anti-interference capability. The electrode also exhibited minimal sensitivity fluctuations towards Hg(II) in real water samples, underscoring its practicality for environmental applications. This study elucidates the mechanism underlying the surface redox reaction of metal oxides facilitated by zero-valent metals, providing us with new strategies for further design of efficient and practical sensors.

3.
Anal Chem ; 96(13): 5232-5241, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38447030

ABSTRACT

Although utilizing nanomaterial-modified electrodes for lead ion detection has achieved great success, most of them are carried out under acidic conditions and ignore the variation of Pb(II) speciation at different pH conditions, leading to the potential inaccuracy of Pb(II) detection in a neutral natural water environment. Thus, designing a novel catalyst with high accuracy for the detection of various forms of the total amount of Pb(II) (Pb2+ and Pb(OH)+) in neutral waters is significant. Herein, Pt nanoclusters (Pt NCs) were elaborately constructed and stabilized on the Co single-atom-doped g-C3N4 with abundant N vacancies (Pt NCs/VN-C3N4), which achieved the ultrasensitive detection (102.16 µM µA-1) of Pb(II) in neutral conditions. The dynamic simulation and theoretical calculations reveal that the parallel deposition of Pb2+ and Pb(OH)+ occurs on the electrode surface modified by Pt NCs/VN-C3N4, and the current peaks of Pb(II) are cocontributed by Pb2+ and Pb(OH)+ species. An "electron inverse" phenomenon in Pt NCs/VN-C3N4 from the VN-C3N4 substrate to Pt NCs endows Pt NCs in an electron-rich state, serving as active centers to promote rapid and efficient reduction for both Pb2+ and Pb(OH)+, facilitating the accurate detection of the total amount of Pb(II) in all forms in the actual water environment.

4.
Anal Chim Acta ; 1288: 342149, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38220283

ABSTRACT

A fundamental understanding of the electroanalytical activity of transition metal sulfide electrocatalysts, especially the origin of the electrocatalytic reactivity on the surface sites of heterostructures with multiple crystalline phases, is essential for the design of low-cost and highly efficient nonprecious metal electrocatalysts for further scientific and technological achievements. Herein, we injected P into NiS and occupied the S sites through a doping strategy. The redistributed electronic structure induced the construction of heterostructures, which significantly improved the structure and chemical state of electrochemically inert NiS. The phase-change mechanism between NiS and NiS2 synergistically catalyzes Pb(II), while the P and S sites jointly lose electrons. Moreover, the constructed heterojunction sensor shows the a sensitivity of 83.43 µA µM-1 to Pb(II) with a theoretical limit of detection of 48 nM, as well as excellent stability, reproducibility, and anti-interference ability. The accurate detection in real water further reveals the potential of this sensor for practical applications. This study provides a guiding strategy for improving electrochemically inert materials to design highly active electrocatalytic interfaces, which has important implications for the development of highly efficient electrode-sensitive materials similar to precious metals to achieve accurate electrical analysis.

5.
Anal Chem ; 96(1): 179-187, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38100653

ABSTRACT

Achieving accurate detection of different speciations of heavy metal ions (HMIs) in an aqueous solution is an urgent problem due to the different bioavailabilities and physiological toxicity. Herein, we nominated a novel strategy to detect HCrO4- and Cr(OH)2+ at a trace level via the electrochemical sensitive surface constructed by Co3O4-rGO modified with amino and carboxyl groups, which revealed that the interactions between distinct functional groups and different oxygen-containing groups of target ions are conducive to the susceptible and anti-interference detection. The detection sensitivities of 19.46 counts µg-1 L for HCrO4- and 13.44 counts µg-1 L for Cr(OH)2+ were obtained under optimal conditions, while the limits of detection were 0.10 and 0.12 µg L-1, respectively. Satisfactory anti-interference and actual water sample analysis results were obtained. A series of advanced optical techniques like X-ray photoelectron spectroscopy, X-ray absorption near-edge structure technology, and density functional theory calculations under an electric field demonstrated that chemical interactions between groups contribute more to the fixation of target ions than electrical attraction alone. The presence of oxygen-containing groups distinct from simple ionic forms was a critical factor in the selectivity and anti-interference detection. Furthermore, the valence cycle of Co(II)/(III) synergistically boosted the detection performance. This research provides a promising tactic from the microscopic perspective of groups' interactions to accomplish the precise speciation analysis of HMIs in the water environment.

6.
Chem Sci ; 14(36): 9678-9688, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37736653

ABSTRACT

Single-atom catalysts have been extensively utilized for electrocatalysis, in which electronic metal-support interactions are typically employed to stabilize single atoms. However, this neglects the metal-metal interactions of adjacent atoms, which are essential for the fine-tuning of selective sites. Herein, the high-loading of Ir single atoms (Ir SAs) (8.9 wt%) were adjacently accommodated into oxygen vacancy-rich Co3O4 nanosheets (Ir SAs/Co3O4). Electronic perturbations for both Ir single atoms and Co3O4 supports were observed under electronic metal-support and metal-metal interactions, thus generating Ir-O-Co/Ir units. Electrons were transferred from Co and Ir to O atoms, inducing the depletion of 3d/5d states in Co/Ir and the occupation of 2p states in O atoms to stabilize the Ir SAs. Moreover, the O atoms of Ir-O-Ir functioned as the main active sites for the electrocatalysis of As(iii), which reduced the energy barrier for the rate-determining step. This was due to the stronger electronic affinities for intermediates from reduction of As(iii), which were completely distinct from other coordinated O atoms of Co3O4 or IrO2. Consequently, the resultant Ir SAs/Co3O4 exhibited far more robust electrocatalytic activities than IrO2/Co3O4 and Co3O4 in the electrocatalysis of As(iii). Moreover, there was a strong orbital coupling effect between the coordinated O atoms of Ir SAs and the -OH of H3AsO3, thus exhibiting superior selectivity for As(iii) in contrast to other common heavy metal cations. This work offers useful insights into the rational design of intriguing SACs with high selectivity and stability for the electrocatalysis and electrochemical analysis of pollutants on an electronic level.

7.
Anal Chim Acta ; 1277: 341676, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37604614

ABSTRACT

The mutual interference in the sensing detection of heavy metal ions (HMIs) is considerably serious and complex. Besides, the co-existed ions may change the stripping peak intensity, shape and position of the target ion, which partly makes peak current analysis inaccurate. Herein, a promising approach of partial peak area analysis was proposed firstly to research the mutual interference. The interference between two species on their electrodeposition processes was investigated by simulating different kinetics parameters, including surface coverage, electro-adsorption, -desorption rate constant, etc. It was proved that the partial peak area is sensitive and regular to these interference kinetics parameters, which is favorable for distinctly identifying different interferences. Moreover, the applicability of the partial peak area analysis was verified on the experiments of Cu2+, As(III) interference at four sensing interfaces: glassy carbon electrode, gold electrode, Co3O4, and Fe2O3 nanoparticles modified electrodes. The interference behaviors between Cu2+ and As(III) relying on solid-solution interfaces were revealed and confirmed by physicochemical characterizations and kinetics simulations. This work proposes a new descriptor (partial peak area) to recognize the interference mechanism and provides a meaningful guidance for accurate detection of HMIs in actual water environment.

8.
J Hazard Mater ; 459: 132104, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37490798

ABSTRACT

The perplexity of double peaks in Pb(II) detections has been a threat to the reliability of Pb(II) electroanalysis results for a long term. For the complexity of electrode interfaces, rare studies were taken on mechanisms of Pb(II) double peaks through interfacial kinetics. In this work, analyses on experimental signals and interfacial simulations were working together to reveal that the generation of Pb(II) double peaks in Pb(II)-Cu(II) systems is the deposition of Pb(II) on Cu deposits occurring in parallel. By applying anode stripping voltammetry and cyclic voltammetry, a parallel deposition reaction was found to influence the shape of Pb(II) peaks, and the existence of the second peak was controlled through the adjustment of experimental conditions. A kinetic model was built to reveal the interference of electroanalysis signals caused by a parallel deposition reaction and simulations based on the model were combined with experiments to illustrate that double peaks of Pb(II) were caused by the parallel deposition on Cu(II) deposits. This work proposes another insight of Pb(II) double peaks from macroscale kinetics and pays more attention on the dynamic procedure of electroanalysis interfaces, which makes the study on environmental electroanalysis interface phenomena more clear and is enlightening to develop efficient electrical methods for pollutant monitoring.

9.
Chem Sci ; 14(11): 2960-2970, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36937602

ABSTRACT

Although the enhanced intrinsic activities of some nano-metal oxides are obtained by manufacturing oxygen vacancies (OVs), the effect of multiple roles of OVs is ambiguous. Herein, an interface catalytic regulation via electron rearrangement and hydroxyl radicals (˙OH) was proposed with the designed ZrO2 hollow sphere rich in OVs (Vo-rich ZrO2). Surprisingly, it was shown that the catalytic ability of Vo-rich ZrO2 was 9.9 times higher than that of ZrO2 with little OVs in electrochemical catalytic reduction of Pb(ii). It was found that the generation of Zr2+ and Zr3+ caused by OVs results in the rearrangement of abundant free electrons to facilitate the catalytic reaction rates. The longer bond length between Vo-rich ZrO2 and reactants, and the lower adsorption energy are beneficial for reactants to desorb, improving the conversion rates. Besides, the produced ˙OH were captured which were induced by OVs and trace divalent heavy metal ions in in situ electron paramagnetic resonance (EPR) experiments, contributing to lowering the energy barriers. This study not only revealed the enhanced interface catalytic effect of electron rearrangement and generated ˙OH triggered by OVs, but also provided unique insights into interface catalytic regulation on nano-metal oxides simulated by OVs.

10.
Anal Chem ; 95(7): 3666-3674, 2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36656141

ABSTRACT

Traditional nanomodified electrodes have made great achievements in electrochemical stripping voltammetry of sensing materials for As(III) detection. Moreover, the intermediate states are complicated to probe because of the ultrashort lifetime and complex reaction conditions of the electron transfer process in electroanalysis, which seriously hinder the identification of the actual active site. Herein, the intrinsic interaction of highly sensitive analytical behavior of nanomaterials is elucidated from the perspective of electronic structure through density functional theory (DFT) and gradient boosting regression (GBR). It is revealed that the atomic radius, d-band center (εd), and the largest coordinative TM-N bond length play a crucial role in regulating the arsenic reduction reaction (ARR) performance by the established ARR process for 27 sets of transition-metal single atoms supported on N-doped graphene. Furthermore, the database composed of filtered intrinsic electronic structural properties and the calculated descriptors of the central metal atom in TM-N4-Gra were also successfully extended to oxygen evolution reaction (OER) systems, which effectively verified the reliability of the whole approach. Generally, a multistep workflow is developed through GBR models combined with DFT for valid screening of sensing materials, which will effectively upgrade the traditional trial-and-error mode for electrochemical interface designing.

11.
J Hazard Mater ; 442: 130122, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36303353

ABSTRACT

Mutual interference issues between heavy metal ions tremendously affect the detection reliability and accuracy in water quality analysis, especially the serious interference of Cu(II) on the detection of As(III) is greatly hard to overcome, which needs to be solved urgently. Herein, iron single-atom catalysts with different coordination structures of FeN2C2 and FeN3P are constructed to selectively catalyze the detection of As(III) in the coexistence of Cu(II). FeN3P achieves a high sensitivity of 3.90 µA ppb-1 toward As(III) in NH4Cl/NH3·H2O electrolyte (pH 8.0), completely avoiding Cu(II)-interference. Moreover, the turnover frequency (TOF) of FeN3P is an order of magnitude higher than that of FeN2C2. X-ray absorption fine structure (XAFS) spectroscopy and density functional theory (DFT) calculations demonstrate that an As-O bond of H3AsO3 is broken by the strong affinities between both P and O atoms and Fe and As atoms, and H3AsO3 are preferentially reduced by FeN3P during adsorptive process. Meanwhile, the low reaction energy barrier of the rate-determined step for As(III) reduction over FeN3P also accelerates the deposition of As(III) and enhances its response signals. The free-Cu(II) are difficult to adsorb on FeN3P and do not compete with As(III) for Fe active sites, which contributes to the excellent anti-Cu(II) interference capability.

12.
Anal Chem ; 94(40): 13631-13641, 2022 10 11.
Article in English | MEDLINE | ID: mdl-36150119

ABSTRACT

Constructing high-effective electrode sensing interfaces has been considered an effective method for electrochemical detection toward heavy metal ions (HMIs). However, most research has been devoted to enhancing the stripping currents of HMIs by simply improving the adsorptive capacity and conductivity of the electrode modified materials, while lacking theoretical guidelines in fabricating catalytic sensing interfaces. Besides, the understanding of detection mechanisms is quite unscientific from the perspective of catalysis. This perspective summarizes five general strategies in designing highly efficient sensing interfaces in the recent five years, including modulating crystal phases, orientations and planes, defect engineering, ionic valence state cycle engineering, adsorption in situ catalysis strategy, and construction of atomic level catalytic active sites. What's more, the catalytic mechanisms for improving the signals of HMIs, such as boosting the electron transfer rates and conversion rates, lowering the energy barriers, etc., are introduced and emphasized. This study has a great significance in directionally controlling functionalized electrochemical sensors to achieve excellent sensitivity and selectivity in detecting environmental pollutants from the view of catalysis, and it also brings enlightenments and guidance to develop new electroanalytical methods.


Subject(s)
Environmental Pollutants , Metals, Heavy , Catalysis , Electrodes , Ions/chemistry , Metals, Heavy/chemistry
13.
Anal Chem ; 94(16): 6225-6233, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35404584

ABSTRACT

Interference among multiple heavy metal ions (HMIs) is a significant problem that must be solved in electroanalysis, which extremely restricts the practical popularization of electrochemical sensors. However, due to the limited exploration of the intrinsic mechanism, it is still difficult to confirm the influencing factors. In this work, a series of experimental and theoretical electroanalysis models have been established to investigate the electroanalysis results of Cu(II), Cd(II), As(III), and their mixtures, which were based on the simple structure and stable coordination of nickel single-atom catalysts. X-ray absorption spectroscopy and density functional theory calculations were used to reveal the underlying detection mechanism of the 50-fold boosting effect of Cu(II) on As(III) while Cd(II) inhibits As(III). Combining the application of the thermodynamic model and Fourier transform infrared reflection, the specific interaction of the nanomaterials and HMIs on the interface is considered to be the fundamental source of the interference. This work opens up a new way of thinking about utilizing the unique modes of interplay between nanomaterials and HMIs to achieve anti-interference intelligent electrodes in stripping analysis.


Subject(s)
Metals, Heavy , Smart Materials , Cadmium/chemistry , Ions , Metals, Heavy/chemistry , Thermodynamics
14.
Anal Chem ; 94(7): 3211-3218, 2022 02 22.
Article in English | MEDLINE | ID: mdl-35104121

ABSTRACT

Vacancy and doping engineering are promising pathways to improve the electrocatalytic ability of nanomaterials for detecting heavy metal ions. However, the effects of the electronic structure and the local coordination on the catalytic performance are still ambiguous. Herein, cubic selenium vacancy-rich CoSe2 (c-CoSe2-x) and P-doped orthorhombic CoSe2-x (o-CoSe2-x|P) were designed via vacancy and doping engineering. An o-CoSe2-x|P-modified glass carbon electrode (o-CoSe2-x|P/GCE) acquired a high sensitivity of 1.11 µA ppb-1 toward As(III), which is about 40 times higher than that of c-CoSe2-x, outperforming most of the reported nanomaterial-modified glass carbon electrodes. Besides, o-CoSe2-x|P/GCE displayed good selectivity toward As(III) compared with other divalent heavy metal cations, which also exhibited excellent stability, repeatability, and practicality. X-ray absorption fine structure spectroscopy and density functional theory calculation demonstrate that electrons transferred from Co and Se to P sites through Co-P and Se-P bonds in o-CoSe2-x|P. P sites obtained plentiful electrons to form active centers, which also had a strong orbital coupling with As(III). In the detection process, As(III) was bonded with P and reduced by the electron-rich sites in o-CoSe2-x|P, thus acquiring a reinforced electrochemical sensitivity. This work provides an in-depth understanding of the influence of the intrinsic physicochemical properties of sensitive materials on the behavior of electroanalysis, thus offering a direct guideline for creating active sites on sensing interfaces.


Subject(s)
Electronics , Electrons , Density Functional Theory , X-Ray Absorption Spectroscopy , X-Rays
15.
Anal Chim Acta ; 1189: 339208, 2022 Jan 02.
Article in English | MEDLINE | ID: mdl-34815044

ABSTRACT

The electrochemical method for highly sensitive determination of arsenic(III) in real water samples with noble-metal-free nanomaterials is still a difficult but significant task. Here, an electrochemical sensor driven by noble-metal-free layered porous Fe3O4/Co3S4 nanosheets was successfully employed for As(III) analysis, which was prepared via a facile two-step method involves a hydrothermal treatment and a subsequent sulfurization process. As expected, the electrochemical detection of As(III) in 0.1 M HAc-NaAc (pH 6.0) by square wave anodic stripping voltammetry (SWASV) with a considerable sensitivity of 4.359 µA/µg·L-1 was obtained, which is better than the commonly used noble metals modified electrodes. Experimental and characterization results elucidate the enhancement of As(III) electrochemical performance could be attributed to its nano-porous structure, the presence of oxygen vacancies and strong synergetic coupling effects between Fe3O4 and Co3S4 species. Besides, the Fe3O4/Co3S4 modified screen printed carbon electrode (Fe3O4/Co3S4-SPCE) shows remarkable stability and repeatability, valuable anti-interference ability and could be used for detection in real water samples. Consequently, the results confirm that as-prepared porous Fe3O4/Co3S4 nanosheets is identified as a promising modifier to detect As(III) in real sample analysis.


Subject(s)
Electrochemical Techniques , Oxygen , Carbon , Electrodes , Gold
16.
Anal Chem ; 93(41): 14014-14023, 2021 10 19.
Article in English | MEDLINE | ID: mdl-34607426

ABSTRACT

An atomic-level Au nanocluster, as an excellent photocatalyst, is generally not considered as an efficient electrocatalyst due to its poor stability. Herein, a method is proposed to stabilize abundant Au25 on Fe2O3 nanoplates (Au25/OV-Fe2O3) successfully with oxygen vacancies (OV) created. Au25/OV-Fe2O3 shows superhigh catalysis in the electrochemical reduction toward As(III). The record-breaking sensitivity (161.42 µA ppb-1) is two orders of magnitude higher than currently reported, where an ultratrace limit of detection (9 ppt) is obtained, suggesting promising applications in the analysis of organic and bioactive substances. The stability of Au25 is attributed to the Au-Fe bond formed after loading Au25 nanoclusters on Fe2O3 nanoplates through "electron compensation" and bond length (Au-S) shortening. Moreover, the ligand S atoms in Au25 nanoclusters significantly contribute to the reduction of As(III). The fantastic stability and superior catalytic ability of Au25/OV-Fe2O3 provide guidelines to stabilize Au nanoclusters on metal oxides, indicating their potential electroanalytical applications.


Subject(s)
Gold , Oxygen , Catalysis , Ligands
17.
Anal Chem ; 93(45): 15115-15123, 2021 11 16.
Article in English | MEDLINE | ID: mdl-34714618

ABSTRACT

Designing new catalysts with high activity and stability is crucial for the effective analysis of environmental pollutants under mild conditions. Here, we developed a superior catalyst of Pt single atoms anchored on MoS2 (Pt1/MoS2) to catalyze the determination of As(III). A detection sensitivity of 3.31 µA ppb-1 was obtained in acetate buffer solution at pH 6.0, which is the highest compared with those obtained by other Pt-based nanomaterials currently reported. Pt1/MoS2 exhibited excellent electrochemical stability during the detection process of As(III), even in the coexistence of Cu(II), Pb(II), and Hg(II). X-ray absorption fine structure spectroscopy and theoretical calculations revealed that Pt single atoms were stably fixed by four S atoms and activated the adjacent S atoms. Then, Pt and S atoms synergistically interacted with O and As atoms, respectively, and transferred some electrons to H3AsO3, which change the rate-determining step of H3AsO3 reduction and reduce reaction energy barriers, thereby promoting rapid and efficient accumulation for As(0). Compared with Pt nanoparticles, the weaker interaction between arsenic species and Pt1/MoS2 enabled the effortless regeneration and cyclic utilization of active centers, which is more favorable for the oxidation of As(0). This work provides inspiration for developing highly efficient sensing platforms from the perspective of atomic-level catalysis and affords references to explore the detection mechanism of such contaminants.


Subject(s)
Arsenicals , Nanostructures , Arsenicals/chemistry , Catalysis , Molybdenum , Oxidation-Reduction , Platinum
18.
J Hazard Mater ; 416: 126157, 2021 Aug 15.
Article in English | MEDLINE | ID: mdl-34492937

ABSTRACT

Fruitful achievements on electrochemical detection toward Pb(II) have been achieved, and their good performance is generally attributed to the adsorption property of nanomaterials. However, the design of sensing interfaces from the electronic structure and electron transfer process is limited. Here, Co@Co3O4 acquired an ultra-high detection sensitivity of 103.11 µA µM-1 toward Pb(II), outperforming the results previously reported. The interfacial oxygen atoms build an electron bridge for Co activating Co3O4. Particularly, new energy levels of oxygen atoms were generated and matched with that of Pb(II). The strong orbital coupling effect between O and Pb makes the Co@Co3O4 sensitive and selective toward Pb(II). Compared with Co metal and Co3O4, Pb(II) got more electrons from Co@Co3O4, and longer Pb-O bonds were formed, allowing more Pb(II) to be catalyzed and reduced. Also, the superior stability and reproducibility of electrochemical detection make electrodes practicably. This work reveals that metals can stimulate intrinsically catalytic activity of their metal oxides, with the generation of orbit energy levels that match to a specific analyte. It provides a promising strategy for constructing sensitive and selective sensing interfaces toward ultra-low concentration analyte in body fluid and other complex samples.

19.
DNA Cell Biol ; 40(7): 936-948, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34042512

ABSTRACT

ß-Amylase (BAM) is an important starch hydrolase, playing a role in a variety of plant growth and development processes. In this study, 22 BAM gene family members (GFMs) were identified in quinoa (Chenopodium quinoa), an ancient crop gaining modern consumer acceptance because of its nutritional qualities. The genetic structure, phylogenetic and evolutionary relationships, and expression patterns of CqBAM GFMs in different tissues, were analyzed. Phylogenetic analyses assigned the CqBAMs, AtBAMs, and OsBAMs into four clades. The CqBAM gene family had expanded due to segmental duplication. RNA-seq analysis revealed expression of the duplicated pairs to be similar, with the expression of CqBAM GFM pairs showing a degree of tissue specificity that was confirmed by reverse transcription quantitative PCR (RT-qPCR). Several CqBAM GFMs were also responsive to abiotic stresses in shoots and/or roots. In conclusion, the BAM gene family in quinoa was identified and systematically analyzed using bioinformatics and experimental methods. These results will help to elucidate the evolutionary relationship and biological functions of the BAM gene family in quinoa.


Subject(s)
Chenopodium quinoa/genetics , beta-Amylase/genetics , Evolution, Molecular , Gene Expression/genetics , Gene Expression Regulation, Plant/genetics , Genome-Wide Association Study , Phylogeny , Plant Proteins/genetics , Plant Roots/genetics , Stress, Physiological , Transcriptome/genetics , beta-Amylase/metabolism
20.
Chem Commun (Camb) ; 57(31): 3820-3823, 2021 Apr 21.
Article in English | MEDLINE | ID: mdl-33876131

ABSTRACT

Combining density functional theory calculation with experiments and kinetics simulation, a multiscale framework describing the influence of reactant-substrate interaction on electrochemical performance was proposed. It was found that the close band center and the rapid adsorption kinetics facilitated the highly selective response of Ni(111) toward Cu(ii), providing a useful tactic to investigate the mechanism of electro-selectivity. This work not only verified that the interaction strength in the ex situ conditions, and kinetics rate could be applied to evaluate the electrochemical selectivity, but also contributed to the options and forecasting of selective electrode materials for heavy metal ions.

SELECTION OF CITATIONS
SEARCH DETAIL
...