Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 90
Filter
1.
Alzheimers Dement ; 2024 Aug 11.
Article in English | MEDLINE | ID: mdl-39129223

ABSTRACT

INTRODUCTION: The heritability of Alzheimer's disease (AD) is estimated to be 58%-79%. However, known genes can only partially explain the heritability. METHODS: Here, we conducted gene-based exome-wide association study (ExWAS) of rare variants and single-variant ExWAS of common variants, utilizing data of 54,569 clinically diagnosed/proxy AD and related dementia (ADRD) and 295,421 controls from the UK Biobank. RESULTS: Gene-based ExWAS identified 11 genes predicting a higher ADRD risk, including five novel ones, namely FRMD8, DDX1, DNMT3L, MORC1, and TGM2, along with six previously reported ones, SORL1, GRN, PSEN1, ABCA7, GBA, and ADAM10. Single-variant ExWAS identified two ADRD-associated novel genes, SLCO1C1 and NDNF. The identified genes were predominantly enriched in amyloid-ß process pathways, microglia, and brain regions like hippocampus. The druggability evidence suggests that DDX1, DNMT3L, TGM2, SLCO1C1, and NDNF could be effective drug targets. DISCUSSION: Our study contributes to the current body of evidence on the genetic etiology of ADRD. HIGHLIGHTS: Gene-based analyses of rare variants identified five novel genes for Alzheimer's disease and related dementia (ADRD), including FRMD8, DDX1, DNMT3L, MORC1, and TGM2. Single-variant analyses of common variants identified two novel genes for ADRD, including SLCO1C1 and NDNF. The identified genes were predominantly enriched in amyloid-ß process pathways, microglia, and brain regions like hippocampus. DDX1, DNMT3L, TGM2, SLCO1C1, and NDNF could be effective drug targets.

2.
Mol Psychiatry ; 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39215183

ABSTRACT

Educational attainment (EA), socioeconomic status (SES) and cognition are phenotypically and genetically linked to health outcomes. However, the role of copy number variations (CNVs) in influencing EA/SES/cognition remains unclear. Using a large-scale (n = 305,401) genome-wide CNV-level association analysis, we discovered 33 CNV loci significantly associated with EA/SES/cognition, 20 of which were novel (deletions at 2p22.2, 2p16.2, 2p12, 3p25.3, 4p15.2, 5p15.33, 5q21.1, 8p21.3, 9p21.1, 11p14.3, 13q12.13, 17q21.31, and 20q13.33, as well as duplications at 3q12.2, 3q23, 7p22.3, 8p23.1, 8p23.2, 17q12 (105 kb), and 19q13.32). The genes identified in gene-level tests were enriched in biological pathways such as neurodegeneration, telomere maintenance and axon guidance. Phenome-wide association studies further identified novel associations of EA/SES/cognition-associated CNVs with mental and physical diseases, such as 6q27 duplication with upper respiratory disease and 17q12 (105 kb) duplication with mood disorders. Our findings provide a genome-wide CNV profile for EA/SES/cognition and bridge their connections to health. The expanded candidate CNVs database and the residing genes would be a valuable resource for future studies aimed at uncovering the biological mechanisms underlying cognitive function and related clinical phenotypes.

3.
CNS Neurosci Ther ; 30(7): e14857, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39014454

ABSTRACT

AIMS: Apply established cerebrospinal fluid (CSF) and serum biomarkers and novel combined indicators based on the amyloid/tau/neurodegeneration (ATN) framework to improve diagnostic and prognostic power in patients with rapidly progressive dementias (RPDs). METHODS: CSF and serum biomarkers of Alzheimer's disease (AD) common neuropathology including Aß42, Aß40, p-Tau, and t-Tau were measured in cognitively normal (CN) controls (n = 33) and three RPD groups with rapidly progressive AD (rpAD, n = 23), autoimmune encephalitis (AE, n = 25), and Creutzfeldt-Jakob disease (CJD, n = 28). Logistic regression and multiple linear regression were used for producing combined indicators and prognostic assessment, respectively, including A&T, A&N, T&N, A&T&N, etc. RESULTS: Combined diagnostic indicator with A&T&N had the potential for differentiating AE from other types of RPDs, identifying 62.51% and 75% of AE subjects based on CSF and serum samples, respectively, compared to 39.13% and 37.5% when using autoantibodies. CSF t-Tau was associated with survival in the CJD group (adjusted R-Square = 0.16, p = 0.02), and its prognosis value improved when using combined predictors based on the ATN framework (adjusted R-Square = 0.273, p = 0.014). CONCLUSION: Combined indicators based on the ATN framework provide a novel perspective for establishing biomarkers for early recognition of RPDs due to treatment-responsive causes.


Subject(s)
Amyloid beta-Peptides , Biomarkers , Dementia , Disease Progression , tau Proteins , Humans , tau Proteins/blood , tau Proteins/cerebrospinal fluid , Male , Female , Aged , Middle Aged , Amyloid beta-Peptides/cerebrospinal fluid , Amyloid beta-Peptides/blood , Prognosis , Dementia/diagnosis , Dementia/blood , Dementia/cerebrospinal fluid , Biomarkers/blood , Biomarkers/cerebrospinal fluid , Creutzfeldt-Jakob Syndrome/diagnosis , Creutzfeldt-Jakob Syndrome/blood , Creutzfeldt-Jakob Syndrome/cerebrospinal fluid , Peptide Fragments/cerebrospinal fluid , Peptide Fragments/blood , Alzheimer Disease/diagnosis , Alzheimer Disease/blood , Alzheimer Disease/cerebrospinal fluid , Aged, 80 and over
4.
Nat Commun ; 15(1): 5540, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956042

ABSTRACT

Iron plays a fundamental role in multiple brain disorders. However, the genetic underpinnings of brain iron and its implications for these disorders are still lacking. Here, we conduct an exome-wide association analysis of brain iron, measured by quantitative susceptibility mapping technique, across 26 brain regions among 26,789 UK Biobank participants. We find 36 genes linked to brain iron, with 29 not being previously reported, and 16 of them can be replicated in an independent dataset with 3,039 subjects. Many of these genes are involved in iron transport and homeostasis, such as FTH1 and MLX. Several genes, while not previously connected to brain iron, are associated with iron-related brain disorders like Parkinson's (STAB1, KCNA10), Alzheimer's (SHANK1), and depression (GFAP). Mendelian randomization analysis reveals six causal relationships from regional brain iron to brain disorders, such as from the hippocampus to depression and from the substantia nigra to Parkinson's. These insights advance our understanding of the genetic architecture of brain iron and offer potential therapeutic targets for brain disorders.


Subject(s)
Brain , Exome Sequencing , Iron , Humans , Iron/metabolism , Brain/metabolism , Male , Female , Mendelian Randomization Analysis , Genome-Wide Association Study , Parkinson Disease/genetics , Parkinson Disease/metabolism , Middle Aged , Genetic Predisposition to Disease/genetics , Aged , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Adult , Alzheimer Disease/genetics , Alzheimer Disease/metabolism
5.
Nat Hum Behav ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987357

ABSTRACT

Recent expansion of proteomic coverage opens unparalleled avenues to unveil new biomarkers of Alzheimer's disease (AD). Among 6,361 cerebrospinal fluid (CSF) proteins analysed from the ADNI database, YWHAG performed best in diagnosing both biologically (AUC = 0.969) and clinically (AUC = 0.857) defined AD. Four- (YWHAG, SMOC1, PIGR and TMOD2) and five- (ACHE, YWHAG, PCSK1, MMP10 and IRF1) protein panels greatly improved the accuracy to 0.987 and 0.975, respectively. Their superior performance was validated in an independent external cohort and in discriminating autopsy-confirmed AD versus non-AD, rivalling even canonical CSF ATN biomarkers. Moreover, they effectively predicted the clinical progression to AD dementia and were strongly associated with AD core biomarkers and cognitive decline. Synaptic, neurogenic and infectious pathways were enriched in distinct AD stages. Mendelian randomization did not support the significant genetic link between CSF proteins and AD. Our findings revealed promising high-performance biomarkers for AD diagnosis and prediction, with implications for clinical trials targeting different pathomechanisms.

6.
Alzheimers Dement ; 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39023044

ABSTRACT

INTRODUCTION: Alzheimer's disease (AD) is a devastating neurological disease with complex genetic etiology. Yet most known loci have only identified from the late-onset type AD in populations of European ancestry. METHODS: We performed a two-stage genome-wide association study (GWAS) of AD totaling 6878 Chinese and 63,926 European individuals. RESULTS: In addition to the apolipoprotein E (APOE) locus, our GWAS of two independent Chinese samples uncovered three novel AD susceptibility loci (KIAA2013, SLC52A3, and TCN2) and a novel ancestry-specific variant within EGFR (rs1815157). More replicated variants were observed in the Chinese (31%) than in the European samples (15%). In combining genome-wide associations and functional annotations, EGFR and TCN2 were prioritized as two of the most biologically significant genes. Phenome-wide Mendelian randomization suggests that high mean corpuscular hemoglobin concentration might protect against AD. DISCUSSION: The current study reveals novel AD susceptibility loci, emphasizes the importance of diverse populations in AD genetic research, and advances our understanding of disease etiology. HIGHLIGHTS: Loci KIAA2013, SLC52A3, and TCN2 were associated with Alzheimer's disease (AD) in Chinese populations. rs1815157 within the EGFR locus was associated with AD in Chinese populations. The genetic architecture of AD varied between Chinese and European populations. EGFR and TCN2 were prioritized as two of the most biologically significant genes. High mean corpuscular hemoglobin concentrations might have protective effects against AD.

7.
Geroscience ; 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822946

ABSTRACT

Considerable uncertainty remains regarding the associations of multiple factors with brain health. We aimed to conduct an exposome-wide association study on neurodegenerative disease and neuropsychiatry disorders using data of participants from the UK Biobank. Multivariable Cox regression models with the least absolute shrinkage and selection operator technique as well as principal component analyses were used to evaluate the exposures in relation to common disorders of central nervous system (CNS). Restricted cubic splines were conducted to explore potential nonlinear correlations. Then, weighted standardized scores were generated based on the coefficients to calculate the joint effects of risk factors. We also estimated the potential impact of eliminating the unfavorable profiles of risk domains on CNS disorders using population attributable fraction (PAF). Finally, sensitivity analyses were performed to reduce the risk of reverse causality. The current study discovered the significantly associated exposures fell into six primary exposome categories. The joint effects of identified risk factors demonstrated higher risks for common disorders of CNS (HR = 1.278 ~ 3.743, p < 2e-16). The PAF varied by exposome categories, with lifestyle and medical history contributing to majority of disease cases. In total, we estimated that up to 3.7 ~ 64.1% of disease cases could be prevented.This study yielded modifiable variables of different categories and assessed their joint effects on common disorders of CNS. Targeting the identified exposures might help formulate effective strategies for maintaining brain health.

8.
Geroscience ; 46(5): 5365-5385, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38837026

ABSTRACT

Telomere length is a putative biomarker of aging and is associated with multiple age-related diseases. There are limited data on the landscape of rare genetic variations in telomere length. Here, we systematically characterize the rare variant associations with leukocyte telomere length (LTL) through exome-wide association study (ExWAS) among 390,231 individuals in the UK Biobank. We identified 18 robust rare-variant genes for LTL, most of which estimated effects on LTL were significant (> 0.2 standard deviation per allele). The biological functions of the rare-variant genes were associated with telomere maintenance and capping and several genes were specifically expressed in the testis. Three novel genes (ASXL1, CFAP58, and TET2) associated with LTL were identified. Phenotypic association analyses indicated significant associations of ASXL1 and TET2 with cancers, age-related diseases, blood assays, and cardiovascular traits. Survival analyses suggested that carriers of ASXL1 or TET2 variants were at increased risk for cancers; diseases of the circulatory, respiratory, and genitourinary systems; and all-cause and cause-specific deaths. The CFAP58 carriers were at elevated risk of deaths due to cancers. Collectively, the present whole exome sequencing study provides novel insights into the genetic landscape of LTL, identifying novel genes associated with LTL and their implications on human health and facilitating a better understanding of aging, thus pinpointing the genetic relevance of LTL with clonal hematopoiesis, biomedical traits, and health-related outcomes.


Subject(s)
Exome Sequencing , Repressor Proteins , Humans , Male , Repressor Proteins/genetics , Female , Dioxygenases/genetics , Proto-Oncogene Proteins/genetics , DNA-Binding Proteins/genetics , Aging/genetics , Middle Aged , Aged , Genome-Wide Association Study , Telomere Homeostasis/genetics , Leukocytes/metabolism , Telomere/genetics , Neoplasms/genetics , Exome/genetics
9.
Nat Hum Behav ; 8(6): 1194-1208, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38589703

ABSTRACT

While numerous genomic loci have been identified for neuropsychiatric conditions, the contribution of protein-coding variants has yet to be determined. Here we conducted a large-scale whole-exome-sequencing study to interrogate the impact of protein-coding variants on 46 neuropsychiatric diseases and 23 traits in 350,770 adults from the UK Biobank. Twenty new genes were associated with neuropsychiatric diseases through coding variants, among which 16 genes had impacts on the longitudinal risks of diseases. Thirty new genes were associated with neuropsychiatric traits, with SYNGAP1 showing pleiotropic effects across cognitive function domains. Pairwise estimation of genetic correlations at the coding-variant level highlighted shared genetic associations among pairs of neurodegenerative diseases and mental disorders. Lastly, a comprehensive multi-omics analysis suggested that alterations in brain structures, blood proteins and inflammation potentially contribute to the gene-phenotype linkages. Overall, our findings characterized a compendium of protein-coding variants for future research on the biology and therapeutics of neuropsychiatric phenotypes.


Subject(s)
Exome Sequencing , Mental Disorders , Humans , Mental Disorders/genetics , Male , Female , Adult , Middle Aged , Genetic Predisposition to Disease , United Kingdom , Phenotype , Neurodegenerative Diseases/genetics , Genetic Association Studies , Aged , Exome/genetics
10.
Ying Yong Sheng Tai Xue Bao ; 35(1): 195-202, 2024 Jan.
Article in Chinese | MEDLINE | ID: mdl-38511456

ABSTRACT

In order to understand the response and adaptation mechanisms of photosynthetic characteristics and growth for Cunninghamia lanceolata saplings in the subtropical region to global warming, we conducted the root-box warming experiment (ambient, ambient+4 ℃) at the Sanming Forest Ecosystem National Observation and Research Station in Fujian Province to investigate the effects of soil warming on the photosynthetic characteristics and growth of C. lanceolata saplings in different seasons. The results showed that the net photosynthetic rate (Pn) and stomatal conductance (gs) of C. lanceolata significantly decreased in summer compared with in spring and autumn. Soil warming had no effect on the Pn and gs of C. lanceolata. However, the interaction between warming and season significantly impacted the leaf water use efficiency (WUE). The tree height and ground diameter growth of C. lanceolata significantly increased in spring compared with in summer and autumn. Warming significantly reduced ground diameter growth, and it diminished the net diameter growth by 48.1% in autumn. However, warming had no impact on the tree height growth of C. lanceolata in each season. The specific leaf area, soluble sugar, and non-structural carbohydrates contents of C. lanceolata significantly improved in summer and autumn compared with in spring. Warming had rarely influence on leaf functional traits in each season. In conclusion, the response of photosynthesis for C. lanceolata to soil warming was insignificant. The photosynthesis of C. lanceolata exhibited significant seasonal dynamics, primarily controlled by gs. C. lanceolata adapted to soil warming by adjusting WUE, and it adjusted to high temperatures and drought stress in summer by increasing soluble sugar content and specific leaf area. The effect of warming on ground diameter growth of C. lanceolata was primarily driven by soil moisture. The seasonal difference in the growth of C. lanceolata was influenced by the photosynthesis of C. lanceolata and the trade-off between the utilization and storage of photosynthetic products.


Subject(s)
Cunninghamia , Ecosystem , Carbohydrates , Photosynthesis , Seasons , Soil/chemistry , Sugars , Trees/physiology
11.
J Neurol ; 271(5): 2529-2538, 2024 May.
Article in English | MEDLINE | ID: mdl-38265471

ABSTRACT

BACKGROUND: Muscle weakness is a prominent feature of Parkinson's disease, but whether the occurrence of this deficit in healthy adults is associated with subsequent PD diagnosis remains unclear. OBJECTIVE: This study sought to examine the relationship between muscle strength, represented by grip strength and walking pace, and the risk of incident PD. METHODS: A total of 422,531 participants from the UK biobank were included in this study. Longitudinal associations of grip strength and walking pace with the risk of incident PD were investigated by Cox proportional hazard models adjusting for several well-established risk factors. Subgroup and sensitivity analyses were also conducted for further validation. RESULTS: After a median follow-up of 9.23 years, 2,118 (0.5%) individuals developed incident PD. For per 5 kg increment of absolute grip strength, there was a significant 10.2% reduction in the risk of incident PD (HR = 0.898, 95% CI [0.872-0.924], P < 0.001). Similarly, per 0.05 kg/kg increment of relative grip strength was related to a 9.2% reduced risk of incident PD (HR = 0.908, 95% CI [0.887-0.929], P < 0.001). Notably, the associations remained consistent when grip strength was calculated as quintiles. Moreover, participants with a slower walking pace demonstrated an elevated risk of incident PD (HR = 1.231, 95%CI [1.075-1.409], P = 0.003). Subgroup and sensitivity analyses further validated the robustness of the observed associations. CONCLUSION: Our findings showed a negative association of grip strength and walking pace with the risk of incident PD independent of important confounding factors. These results hold potential implications for the early screening of people at high-risk of PD.


Subject(s)
Hand Strength , Parkinson Disease , Humans , Parkinson Disease/physiopathology , Parkinson Disease/epidemiology , Male , Female , Hand Strength/physiology , Middle Aged , Aged , Prospective Studies , Incidence , Walking Speed/physiology , United Kingdom/epidemiology , Adult , Risk Factors , Follow-Up Studies , Cohort Studies , Longitudinal Studies , Walking/physiology
12.
Nat Hum Behav ; 8(4): 779-793, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38182882

ABSTRACT

Despite its crucial role in the regulation of vital metabolic and neurological functions, the genetic architecture of the hypothalamus remains unknown. Here we conducted multivariate genome-wide association studies (GWAS) using hypothalamic imaging data from 32,956 individuals to uncover the genetic underpinnings of the hypothalamus and its involvement in neuropsychiatric traits. There were 23 significant loci associated with the whole hypothalamus and its subunits, with functional enrichment for genes involved in intracellular trafficking systems and metabolic processes of steroid-related compounds. The hypothalamus exhibited substantial genetic associations with limbic system structures and neuropsychiatric traits including chronotype, risky behaviour, cognition, satiety and sympathetic-parasympathetic activity. The strongest signal in the primary GWAS, the ADAMTS8 locus, was replicated in three independent datasets (N = 1,685-4,321) and was strengthened after meta-analysis. Exome-wide association analyses added evidence to the association for ADAMTS8, and Mendelian randomization showed lower ADAMTS8 expression with larger hypothalamic volumes. The current study advances our understanding of complex structure-function relationships of the hypothalamus and provides insights into the molecular mechanisms that underlie hypothalamic formation.


Subject(s)
Genome-Wide Association Study , Hypothalamus , Humans , Hypothalamus/metabolism , Hypothalamus/diagnostic imaging , Male , Female , Adult , Mental Disorders/genetics , ADAMTS Proteins/genetics , Middle Aged , Mendelian Randomization Analysis
13.
Nat Hum Behav ; 8(3): 576-589, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38177695

ABSTRACT

Sleep is vital for human health and has a moderate heritability. Previous genome-wide association studies have limitations in capturing the role of rare genetic variants in sleep-related traits. Here we conducted a large-scale exome-wide association study of eight sleep-related traits (sleep duration, insomnia symptoms, chronotype, daytime sleepiness, daytime napping, ease of getting up in the morning, snoring and sleep apnoea) among 450,000 participants from UK Biobank. We identified 22 new genes associated with chronotype (ADGRL4, COL6A3, CLK4 and KRTAP3-3), daytime sleepiness (ST3GAL1 and ANKRD12), daytime napping (PLEKHM1, ANKRD12 and ZBTB21), snoring (WDR59) and sleep apnoea (13 genes). Notably, 20 of these genes were confirmed to be significantly associated with sleep disorders in the FinnGen cohort. Enrichment analysis revealed that these discovered genes were enriched in circadian rhythm and central nervous system neurons. Phenotypic association analysis showed that ANKRD12 was associated with cognition and inflammatory traits. Our results demonstrate the value of large-scale whole-exome analysis in understanding the genetic architecture of sleep-related traits and potential biological mechanisms.


Subject(s)
Disorders of Excessive Somnolence , Sleep Apnea Syndromes , Humans , Snoring , Genome-Wide Association Study , Exome Sequencing , Sleep/genetics , Nuclear Proteins/genetics
14.
Nat Hum Behav ; 8(1): 164-180, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37857874

ABSTRACT

The cerebral ventricles are recognized as windows into brain development and disease, yet their genetic architectures, underlying neural mechanisms and utility in maintaining brain health remain elusive. Here we aggregated genetic and neuroimaging data from 61,974 participants (age range, 9 to 98 years) in five cohorts to elucidate the genetic basis of ventricular morphology and examined their overlap with neuropsychiatric traits. Genome-wide association analysis in a discovery sample of 31,880 individuals identified 62 unique loci and 785 candidate genes associated with ventricular morphology. We replicated over 80% of loci in a well-matched cohort of lateral ventricular volume. Gene set analysis revealed enrichment of ventricular-trait-associated genes in biological processes and disease pathogenesis during both early brain development and degeneration. We explored the age-dependent genetic associations in cohorts of different age groups to investigate the possible roles of ventricular-trait-associated loci in neurodevelopmental and neurodegenerative processes. We describe the genetic overlap between ventricular and neuropsychiatric traits through comprehensive integrative approaches under correlative and causal assumptions. We propose the volume of the inferior lateral ventricles as a heritable endophenotype to predict the risk of Alzheimer's disease, which might be a consequence of prodromal Alzheimer's disease. Our study provides an advance in understanding the genetics of the cerebral ventricles and demonstrates the potential utility of ventricular measurements in tracking brain disorders and maintaining brain health across the lifespan.


Subject(s)
Alzheimer Disease , Humans , Child , Adolescent , Young Adult , Adult , Middle Aged , Aged , Aged, 80 and over , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Genome-Wide Association Study , Phenotype , Cerebral Ventricles/diagnostic imaging , Cerebral Ventricles/pathology , Brain/diagnostic imaging , Brain/pathology
15.
J Neurochem ; 167(5): 668-679, 2023 12.
Article in English | MEDLINE | ID: mdl-37908051

ABSTRACT

Identifying circulating metabolites associated with dementia, cognition, and brain volume may improve the understanding of dementia pathogenesis and provide novel insights for preventive and therapeutic interventions. This cohort study included a total of 87 885 participants (median follow-up of 9.1 years, 54% female) without dementia at baseline from the UK Biobank. A total of 249 plasma metabolites were measured using nuclear magnetic resonance spectroscopy at baseline. Cox proportional regression was used to examine the associations of each metabolite with incident dementia (cases = 1134), Alzheimer's disease (AD; cases = 488), and vascular dementia (VD; cases = 257) during follow-up. Dementia-associated metabolites were further analyzed for association with cognitive deficits (N = 87 885) and brain volume (N = 7756) using logistic regression and linear regression. We identified 26 metabolites associated with incident dementia, of which 6 were associated with incident AD and 5 were associated with incident VD. These 26 dementia-related metabolites were subfractions of intermediate-density lipoprotein, large low-density lipoprotein (L-LDL), small high-density lipoprotein (S-HDL), very-low-density lipoprotein, fatty acids, ketone bodies, citrate, glucose, and valine. Among them, the cholesterol percentage in L-LDL (L-LDL-C%) was associated with lower risk of AD (HR [95% CI] = 0.92 [0.87-0.97], p = 0.002), higher brain cortical (ß = 0.047, p = 3.91 × 10-6 ), and hippocampal (ß = 0.043, p = 1.93 × 10-4 ) volume. Cholesteryl ester-to-total lipid ratio in L-LDL (L-LDL-CE%) was associated with lower risk of AD (HR [95% CI] = 0.93 [0.90-0.96], p = 1.48 × 10-4 ), cognitive deficits (odds ratio = 0.98, p = 0.009), and higher hippocampal volume (ß = 0.027, p = 0.009). Cholesteryl esters in S-HDL (S-HDL-CE) were associated with lower risk of VD (HR [95% CI] = 0.81 [0.71-0.93], p = 0.002), but not AD. Taken together, circulating levels of L-LDL-CE% and L-LDL-C% were robustly associated with risk of AD and AD phenotypes, but not with VD. S-HDL-CE was associated with lower risk of VD, but not with AD or AD phenotypes. These metabolites may play a role in the advancement of future intervention trials. Additional research is necessary to gain a complete comprehension of the molecular mechanisms behind these associations.


Subject(s)
Alzheimer Disease , Cholesterol , Humans , Female , Male , Cohort Studies , Cholesterol, LDL , Prospective Studies , Lipoproteins, HDL/metabolism , Alzheimer Disease/epidemiology , Risk Factors
16.
Stroke Vasc Neurol ; 2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37827852

ABSTRACT

INTRODUCTION: Evidence supporting cardiovascular diseases could increase the risk of dementia remains fragmented. A comprehensive study to illuminate the distinctive associations across different dementia types is still lacking. This study is sought to: (1) determine the clinical validity of Framingham General Cardiovascular Risk Score (FGCRS) for dementia assessment and (2) examine the associations between cardiovascular diseases and the risk of dementia. METHODS: A total of 432 079 dementia-free individuals at baseline from UK Biobank were included. Multivariable Cox proportional hazard models were used to investigate the prospective associations for FGCRS and a series of cardiovascular diseases with all-cause dementia (ACD) and its major components, Alzheimer's disease (AD) and vascular dementia (VaD). RESULTS: During a median follow-up of 110.1 months, 4711 individuals were diagnosed with dementia. FGCRS was associated with increased risks across the dementia spectrum. In stratification analysis, high-risk groups have demonstrated the greatest dementia burdens, particularly to VaD. Over 74 traits, 9 adverse associations, such as chronic ischaemic heart disease (ACD: HR=1.354; AD: HR=1.269; VaD: HR=1.768), atrioventricular block (ACD: HR=1.562; AD: HR=1.556; VaD: HR=2.069), heart failure (ACD: HR=1.639; AD: HR=1.543; VaD: HR=2.141) and hypotension (ACD: HR=2.912; AD: HR=2.361; VaD: HR=3.315) were observed. Several distinctions were also found, with atrial fibrillation, cerebral infarction, and haemorrhage only associated with greater risks of ACD and VaD. DISCUSSION: By identifying distinctive associations between cardiovascular diseases and dementia, this study has established a comprehensive 'mapping' that may untangle the long-standing discrepancy. FGCRS has demonstrated its predictivity beyond cardiovascular diseases burdens, suggesting potential opportunities for implantation.

17.
Aging Cell ; 22(12): e13995, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37723992

ABSTRACT

Identifying the clinical implications and modifiable and unmodifiable factors of aging requires the measurement of biological age (BA) and age gap. Leveraging the biomedical traits involved with physical measures, biochemical assays, genomic data, and cognitive functions from the healthy participants in the UK Biobank, we establish an integrative BA model consisting of multi-dimensional indicators. Accelerated aging (age gap >3.2 years) at baseline is associated incident circulatory diseases, related chronic disorders, all-cause, and cause-specific mortality. We identify 35 modifiable factors for age gap (p < 4.81 × 10-4 ), where pulmonary functions, body mass, hand grip strength, basal metabolic rate, estimated glomerular filtration rate, and C-reactive protein show the most significant associations. Genetic analyses replicate the possible associations between age gap and health-related outcomes and further identify CST3 as an essential gene for biological aging, which is highly expressed in the brain and is associated with immune and metabolic traits. Our study profiles the landscape of biological aging and provides insights into the preventive strategies and therapeutic targets for aging.


Subject(s)
Cardiovascular Diseases , Hand Strength , Humans , Child, Preschool , Aging/genetics , Brain , Outcome Assessment, Health Care
18.
Age Ageing ; 52(6)2023 06 01.
Article in English | MEDLINE | ID: mdl-37381843

ABSTRACT

BACKGROUND: Pharmacological treatments are very common to be used for alleviating neuropsychiatric symptoms (NPS) in dementia. However, decision on drug selection is still a matter of controversy. AIMS: To summarise the comparative efficacy and acceptability of currently available monotherapy drug regimens for reducing NPS in dementia. METHOD: We searched PubMed, MEDLINE, EMBASE and Cochrane Central Register of Controlled Trials between inception and 26 December 2022 without language restrictions; and reference lists scanned from selected studies and systematic reviews. Double-blind randomised controlled trials were identified from electronic databases for reporting NPS outcomes in people with dementia. Primary outcomes were efficacy and acceptability. Confidence in the evidence was assessed using Confidence in Network Meta-Analysis (CINeMA). RESULTS: We included 59 trials (15,781 participants; mean age, 76.6 years) and 15 different drugs in quantitative syntheses. Risperidone (standardised mean difference [SMD] -0.20, 95% credible interval [CrI] -0.40 to -0.10) and galantamine (-0.20, -0.39 to -0.02) were more effective than placebo in short-term treatment (median duration: 12 weeks). Galantamine (odds ratio [OR] 1.95, 95% CrI 1.38-2.94) and rivastigmine (1.87, 1.24-2.99) were associated with more dropouts than placebo, and some active drugs. Most of the results were rated as low or very low according to CINeMA. CONCLUSIONS: Despite the scarcity of high-quality evidence, risperidone is probably the best pharmacological option to consider for alleviating NPS in people with dementia in short-term treatment when considering the risk-benefit profile of drugs.


Subject(s)
Dementia , Galantamine , Humans , Aged , Network Meta-Analysis , Risperidone , Databases, Factual , Dementia/diagnosis , Dementia/drug therapy , Randomized Controlled Trials as Topic
19.
J Affect Disord ; 335: 418-430, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37164063

ABSTRACT

BACKGROUND: The corpus callosum (CC) is the main structure transferring information between the cerebral hemispheres. Although previous large-scale genome-wide association study (GWAS) has illustrated the genetic architecture of white matter integrity of CC, CC volume is less stressed. METHODS: Using MRI data from 33,861 individuals in UK Biobank, we conducted univariate and multivariate GWAS for CC fractional anisotropy (FA) and volume with PLINK 2.0 and MOSTest. All discovered SNPs in the multivariate framework were functionally annotated in FUMA v1.3.8. In the meanwhile, a series of gene property analyses was conducted simultaneously. In addition, we estimated genetic relationship between CC metrics and other neuropsychiatric traits and diseases. RESULTS: We identified a total of 36 and 82 significant genomic loci for CC FA and volume (P < 5 × 10-8). And 53 and 27 genes were respectively mapped by four mapping strategies. For CC volume, gene-set analysis revealed pathways mainly relating to cell migration; cell-type analysis found the top enrichment in neuroglia while for CC FA in GABAergic neurons. Furthermore, we found a lot of genetic overlap and shared loci between CC FA and volume and common neuropsychiatric diseases. DISCUSSION: Collectively, this study helps to better understand the genetic architecture of whole CC and CC subregions. However, the way to divide CC FA and volume in our study restricts the interpretations of our results. Future work will be needed to pay attention to the genetic structure of white matter volume, and an appropriate division of CC may help to better understand CC structure.


Subject(s)
Corpus Callosum , White Matter , Humans , Corpus Callosum/diagnostic imaging , Diffusion Tensor Imaging , Genome-Wide Association Study , Magnetic Resonance Imaging , White Matter/diagnostic imaging , Anisotropy
20.
J Alzheimers Dis ; 93(3): 977-990, 2023.
Article in English | MEDLINE | ID: mdl-37212101

ABSTRACT

BACKGROUND: The association between poor oral health and the risk of incident dementia remains unclear. OBJECTIVE: To investigate the associations of poor oral health with incident dementia, cognitive decline, and brain structure in a large population-based cohort study. METHODS: A total of 425,183 participants free of dementia at baseline were included from the UK Biobank study. The associations between oral health problems (mouth ulcers, painful gums, bleeding gums, loose teeth, toothaches, and dentures) and incident dementia were examined using Cox proportional hazards models. Mixed linear models were used to investigate whether oral health problems were associated with prospective cognitive decline. We examined the associations between oral health problems and regional cortical surface area using linear regression models. We further explored the potential mediating effects underlying the relationships between oral health problems and dementia. RESULTS: Painful gums (HR = 1.47, 95% CI [1.317-1.647], p < 0.001), toothaches (HR = 1.38, 95% CI [1.244-1.538], p < 0.001), and dentures (HR = 1.28, 95% CI [1.223-1.349], p < 0.001) were associated with increased risk of incident dementia. Dentures were associated with a faster decline in cognitive functions, including longer reaction time, worse numeric memory, and worse prospective memory. Participants with dentures had smaller surface areas of the inferior temporal cortex, inferior parietal cortex, and middle temporal cortex. Brain structural changes, smoking, alcohol drinking, and diabetes may mediate the associations between oral health problems and incident dementia. CONCLUSION: Poor oral health is associated with a higher risk of incident dementia. Dentures may predict accelerated cognitive decline and are associated with regional cortical surface area changes. Improvement of oral health care could be beneficial for the prevention of dementia.


Subject(s)
Cognitive Dysfunction , Dementia , Humans , Dementia/epidemiology , Oral Health , Cohort Studies , Prospective Studies , Toothache , Cognitive Dysfunction/epidemiology , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL