Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Org Biomol Chem ; 21(46): 9112-9122, 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-37986647

ABSTRACT

Organic thiocyanates are valuable biological moities and drug-building blocks. They can also transform effectively into thioethers, thiols, alkynyl thioethers, and thiocarbamates in synthetic chemistry. With respect to the merits of thiocyanates, many chemists and our research team have developed diverse strategies to access SCN-revised heterocycles/spirocycles via an effective radical cyclization process. Hence, this review article first describes the importance/application of thiocyanates. Subsequently, it summarizes the reaction conditions, substrate scopes, and plausible mechanism, respectively, of the excellent work stated above.

2.
Sci Data ; 9(1): 427, 2022 07 20.
Article in English | MEDLINE | ID: mdl-35859094

ABSTRACT

Photosynthesis is a key process linking carbon and water cycles, and satellite-retrieved solar-induced chlorophyll fluorescence (SIF) can be a valuable proxy for photosynthesis. The TROPOspheric Monitoring Instrument (TROPOMI) on the Copernicus Sentinel-5P mission enables significant improvements in providing high spatial and temporal resolution SIF observations, but the short temporal coverage of the data records has limited its applications in long-term studies. This study uses machine learning to reconstruct TROPOMI SIF (RTSIF) over the 2001-2020 period in clear-sky conditions with high spatio-temporal resolutions (0.05° 8-day). Our machine learning model achieves high accuracies on the training and testing datasets (R2 = 0.907, regression slope = 1.001). The RTSIF dataset is validated against TROPOMI SIF and tower-based SIF, and compared with other satellite-derived SIF (GOME-2 SIF and OCO-2 SIF). Comparing RTSIF with Gross Primary Production (GPP) illustrates the potential of RTSIF for estimating gross carbon fluxes. We anticipate that this new dataset will be valuable in assessing long-term terrestrial photosynthesis and constraining the global carbon budget and associated water fluxes.

3.
J Org Chem ; 86(17): 12460-12466, 2021 09 03.
Article in English | MEDLINE | ID: mdl-34382805

ABSTRACT

Free radical-initiated cascade cyclization of unactivated alkenes with chloralkanes, which undergoes selective activation of the α-C(sp3)-H bond of chloralkanes, provides a protocol for the synthesis of chlorinated heterocycles or polycyclic compounds. A series of radical inhibition experiments, radical capture operations, and radical clock tests were studied in this system.


Subject(s)
Alkenes , Polycyclic Compounds , Cyclization , Free Radicals
4.
Sci Total Environ ; 692: 188-200, 2019 Nov 20.
Article in English | MEDLINE | ID: mdl-31349162

ABSTRACT

Snow cover, which is undergoing significant change along with global climate change, has considerable impacts on the functioning of terrestrial ecosystems. However, how snow cover change affects the vegetation gross primary production (GPP) in temperate regions still requires in-depth exploration. In this study, we investigated how changes in the winter snow depth (WSD) and snowmelt date (SMD) affect spring GPP and summer GPP through their influences on the start date of the growing season (SGS) and the maximum daily GPP (GPPmax), respectively, across temperate China from 2001 to 2015, based on both in situ measurements and satellite products (i.e., GLASS GPP, WestDC snow depth and GLEAM soil moisture). Soil moisture is identified as an important factor in the snow-GPP relationship in temperate China. Since most of temperate China is water-limited, thicker snow cover along with later snowmelt generally resulted in earlier SGS via a significant increase in soil moisture (47% of the area), which lengthened the growth period and enhanced spring carbon uptake in these areas. However, in wetter regions (7% of the area), thicker snow cover with later snowmelt would be more likely to delay the SGS, thus reducing spring GPP. Moreover, although the direct impact mechanisms of snow cover dynamics on summer GPP have not been identified, the snow-induced SGS change was found to have delayed effects on summer photosynthesis capacity, as earlier SGS increased the GPPmax, and thus summer GPP. However, the photosynthesis enhanced by earlier SGS meanwhile increased the plant water consumption, which would bring water stress and reduce summer GPP if the subsequent precipitation is unable to compensate for the water consumption. Our findings on the effects of snow cover change on carbon uptake would provide the basic mechanisms for assessing how future climate change will affect ecosystem productivity.


Subject(s)
Carbon/metabolism , Plant Physiological Phenomena , Plants/metabolism , Snow , China , Climate , Plant Development
5.
Sci Total Environ ; 663: 45-59, 2019 May 01.
Article in English | MEDLINE | ID: mdl-30708216

ABSTRACT

Although gross primary production (GPP) is an essential proxy for reflecting terrestrial ecosystem function, GPP estimation at regional scale on the Tibetan Plateau (TP) is constrained by the lack of ground observations. Moreover, how climate-induced phenological and physiological change further affects carbon uptake in this region remains unclear. In this study, we first estimated GPP at 8-day intervals and a 0.5° resolution from 2007 to 2015 over the TP based on an improved approach and GOME-2 sun-induced fluorescence (SIF) retrievals. The obtained SIF-based GPP coincided well with flux observations and two state of the art GPP products, with a regional carbon uptake of 0.62 ±â€¯0.04 PgC year-1 or 307 ±â€¯22 gC m-2 year-1. With the SIF-based GPP, two phenological indicators (start and end date of the growing season, i.e., SGS and EGS) and one physiological indicator (maximum photosynthesis capacity, GPPmax) were identified and their relative contributions to inter-annual GPP variability were further quantitatively separated using a multiple regression model. Advanced SGS, delayed EGS, and increasing GPPmax can all enhance carbon uptake and a combination of the three indicators can explain 72 ±â€¯20% of GPP inter-annual variability. The response of annual GPP to phenological and physiological variations has significant altitude dependence, as the decline of annual GPP in most of the area is dominated by the GPPmax decline, while the increase of annual GPP in the high-altitude area is dominated by the advanced SGS. The response of all three indicators to both temperature and precipitation variation has great spatial heterogeneity. Our study suggests that remote sensing of SIF can provide a unique opportunity to estimate GPP in regions with a lack of ground observations and that our enhanced understanding of the impact of the climate-induced phenological and physiological change on GPP variability in alpine ecosystems can improve GPP estimation in a changing climate.

SELECTION OF CITATIONS
SEARCH DETAIL
...