Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 85
Filter
1.
JACS Au ; 4(3): 1194-1206, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38559742

ABSTRACT

Using molecular imaging techniques to monitor biomarkers and drug release profiles simultaneously is highly advantageous for cancer diagnosis and treatment. However, achieving the accurate quantification of both biomarkers and drug release with a single imaging modality is challenging. This study presents the development of a glutathione (GSH)-responsive polymer-based micelle, PEG-SS-FCy7/PEG-SS-GEM (PSFG), which can precisely localize the tumor using bimodal imaging and prevent drug leakage. These PSFG micelles exhibit a small particle size of 106.3 ± 12.7 nm with a uniform size distribution, and the drug loading efficiency can also be easily controlled by changing the PEG-SS-FCy7 (PSF) and PEG-SS-GEM (PSG) feeding ratio. The PSFG micelles display weak fluorescence emission and minimal drug release under physiological conditions but collapse in the presence of GSH to trigger near-infrared fluorescence and the 19F magnetic resonance imaging signal, allowing for real-time monitoring of intracellular GSH levels and drug release. GSH could synergistically promote the disassembly of the micellar structure, resulting in accelerated probe and drug release of up to about 93.1% after 24 h. These prodrug micelles exhibit high in vitro and in vivo antitumor abilities with minimal side effects. The GSH-responsive drug delivery system with dual-modal imaging capability provides a promising imaging-guided chemotherapeutic platform to probe the tumor microenvironment and quantify real-time drug release profiles with minimal side effects.

2.
Angew Chem Int Ed Engl ; 63(22): e202403771, 2024 05 27.
Article in English | MEDLINE | ID: mdl-38551448

ABSTRACT

The immune checkpoint blockade strategy has improved the survival rate of late-stage lung cancer patients. However, the low immune response rate limits the immunotherapy efficiency. Here, we report a ROS-responsive Fe3O4-based nanoparticle that undergoes charge reversal and disassembly in the tumor microenvironment, enhancing the uptake of Fe3O4 by tumor cells and triggering a more severe ferroptosis. In the tumor microenvironment, the nanoparticle rapidly disassembles and releases the loaded GOx and the immune-activating peptide Tuftsin under overexpressed H2O2. GOx can consume the glucose of tumor cells and generate more H2O2, promoting the disassembly of the nanoparticle and drug release, thereby enhancing the therapeutic effect of ferroptosis. Combined with Tuftsin, it can more effectively reverse the immune-suppressive microenvironment and promote the recruitment of effector T cells in tumor tissues. Ultimately, in combination with α-PD-L1, there is significant inhibition of the growth of lung metastases. Additionally, the hyperpolarized 129Xe method has been used to evaluate the Fe3O4 nanoparticle-mediated immunotherapy, where the ventilation defects in lung metastases have been significantly improved with complete lung structure and function recovered. The ferroptosis-enhanced immunotherapy combined with non-radiation evaluation methodology paves a new way for designing novel theranostic agents for cancer therapy.


Subject(s)
Ferroptosis , Immunotherapy , Magnetic Resonance Imaging , Reactive Oxygen Species , Ferroptosis/drug effects , Humans , Reactive Oxygen Species/metabolism , Tumor Microenvironment/drug effects , Mice , Animals , Lung Neoplasms/drug therapy , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/therapy , Lung Neoplasms/pathology , Xenon Isotopes/chemistry , Magnetite Nanoparticles/chemistry , Cell Line, Tumor
3.
Phys Rev Lett ; 132(4): 043601, 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38335360

ABSTRACT

In standard quantum weak measurements, preselection and postselection of quantum states are implemented in the same photon. Here we go beyond this restrictive setting and demonstrate that the preselection and postselection can be performed in two different photons, if the two photons are polarization entangled. The Pancharatnam-Berry phase metasurface is incorporated in the weak measurement system to perform weak coupling between probe wave function and spin observable. By introducing nonlocal weak measurement into the microscopy imaging system, it allows us to remotely switch different microscopy imaging modes of pure-phase objects, including bright-field, differential, and phase reconstruction. Furthermore, we demonstrate that the nonlocal weak-measurement scheme can prevent almost all environmental noise photons from detection and thus achieves a higher image contrast than the standard scheme at a low photon level. Our results provide the possibility to develop a quantum nonlocal weak-measurement microscope for label-free imaging of transparent biological samples.

4.
J Mater Chem B ; 12(9): 2373-2383, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38349037

ABSTRACT

Smart lipids with fluorescence emission, thermal response, and polyethylene glycolation (PEGylation) functions can be highly valuable for formulation, image-traceable delivery, and targeted release of payloads. Herein, a series of jellyfish-shaped amphiphiles with a tetraphenylethene (TPE) core and four symmetrical amphiphilic side chains were conveniently synthesized and systematically investigated as smart lipids. Compared with regular amphiphilic TPE lipids and phospholipids, the unprecedented jellyfish-shaped molecular geometry was found to enable a series of valuable capabilities, including sensitive and responsive aggregation-induced emission of fluorescence (AIE FL) and real-time FL monitoring of drug uptake. Furthermore, the jellyfish-shaped geometry facilitated the concentration-dependent aggregation from unimolecular micelles at low concentrations to "side-by-side" spherical aggregates at high concentrations and a unique mode of AIE. In addition, the size and the arrangement of the amphiphilic side chains were found to dominate the aggregate stability, cell uptake, and thus the cytotoxicity of the amphiphiles. This study has unprecedentedly developed versatile smart TPE lipids with precise structures, and unique physicochemical and biological properties while the peculiar structure-property relationship may shed new light on the design and application of AIE fluorophores and functional lipids in biomedicine and materials science.


Subject(s)
Fluorescent Dyes , Micelles , Fluorescence , Cell Membrane , Fluorescent Dyes/chemistry , Lipids
5.
Cancer Res ; 84(8): 1252-1269, 2024 04 15.
Article in English | MEDLINE | ID: mdl-38285760

ABSTRACT

The BET family member BRD4 is a bromodomain-containing protein that plays a vital role in driving oncogene expression. Given their pivotal role in regulating oncogenic networks in various cancer types, BET inhibitors (BETi) have been developed, but the clinical application has been impeded by dose-limiting toxicity and resistance. Understanding the mechanisms of BRD4 activity and identifying predictive biomarkers could facilitate the successful clinical use of BETis. Herein, we show that KDM5C and BRD4 cooperate to sustain tumor cell growth. Mechanistically, KDM5C interacted with BRD4 and stimulated BRD4 enhancer recruitment. Moreover, binding of the BRD4 C-terminus to KDM5C stimulated the H3K4 demethylase activity of KDM5C. The abundance of both KDM5C-associated BRD4 and H3K4me1/3 determined the transcriptional activation of many oncogenes. Notably, depletion or pharmacologic degradation of KDM5C dramatically reduced BRD4 chromatin enrichment and significantly increased BETi efficacy across multiple cancer types in both tumor cell lines and patient-derived organoid models. Furthermore, targeting KDM5C in combination with BETi suppressed tumor growth in vivo in a xenograft mouse model. Collectively, this work reveals a KDM5C-mediated mechanism by which BRD4 regulates transcription, providing a rationale for incorporating BETi into combination therapies with KDM5C inhibitors to enhance treatment efficacy. SIGNIFICANCE: BRD4 is recruited to enhancers in a bromodomain-independent manner by binding KDM5C and stimulates KDM5C H3K4 demethylase activity, leading to synergistic effects of BET and KDM5C inhibitor combinations in cancer.


Subject(s)
Antineoplastic Agents , Transcription Factors , Humans , Animals , Mice , Transcription Factors/metabolism , Nuclear Proteins/metabolism , Chromatin , Cell Cycle Proteins , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Bromodomain Containing Proteins , Histone Demethylases
7.
Chem Sci ; 14(48): 14157-14165, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38098703

ABSTRACT

Magnetic coupling between paramagnetic centers is a crucial phenomenon in the design of efficient MRI contrast agents. In this study, we investigate the paraCEST properties and magnetic coupling effects of a novel homodinuclear Ni(ii) complex, 1, containing a Robson type macrocyclic ligand. A thorough analysis of the complex's electronic and magnetic properties revealed that the magnetic coupling effect reduces the transverse relaxation rate and enhances the sharpness of the proton resonances, leading to enhanced CEST efficiency. This novel mechanism, which we coined "magnetic-coupling induced line sharpening" (MILS), can be crucial for optimizing the performance of paramagnetic metal complexes in paraCEST imaging. Moreover, magnetic coupling plays a critical role in the relaxation properties of homodinuclear complexes. Our study not only paves the way for the creation of advanced paraCEST agents with enhanced CEST capabilities and sensitivity but also provides valuable guidance for the design of other MRI contrast agents utilizing dinuclear metal complexes.

8.
Cell Rep ; 42(11): 113453, 2023 11 28.
Article in English | MEDLINE | ID: mdl-37976162

ABSTRACT

Increased de novo lipogenesis (DNL) is a major feature of nonalcoholic steatohepatitis (NASH). None of the drugs targeting the catalytic activity of acetyl-CoA carboxylase (ACC), the rate-limiting enzyme in the DNL process, have been approved by the FDA. Whether cytosolic ACC1 can be regulated spatially remains to be explored. Herein, we find that streptavidin (SA), which is a bacterium-derived tetrameric protein, forms cytosolic condensates and efficiently induces a spatial re-localization of ACC1 in liver cells, concomitant with inhibited lipid accumulation. Both SA tetrameric structure and multivalent protein interaction are required for condensate formation. Interestingly, the condensates are further characterized as gel-like membraneless organelle (SAGMO) and significantly restrict the cytosolic dispersion of ACC1 and fatty acid synthase. Notably, AAV-mediated delivery of SA partially blocks mouse liver DNL and ameliorates NASH without eliciting hypertriglyceridemia. In summary, our study shows that insulating lipogenesis-related proteins by SAGMO might be effective for NASH treatment.


Subject(s)
Non-alcoholic Fatty Liver Disease , Mice , Animals , Non-alcoholic Fatty Liver Disease/metabolism , Acetyl-CoA Carboxylase/metabolism , Bacterial Proteins/metabolism , Hepatocytes/metabolism , Lipogenesis , Bacteria/metabolism , Liver/metabolism
9.
Angew Chem Int Ed Engl ; 62(46): e202313137, 2023 11 13.
Article in English | MEDLINE | ID: mdl-37766426

ABSTRACT

To realize sensing and labeling biomarkers is quite challenging in terms of designing multimodal imaging probes. In this study, we developed a novel ß-galactosidase (ß-gal) activated bimodal imaging probe that combines near-infrared (NIR) fluorescence and magnetic resonance imaging (MRI) to enable real-time visualization of activity in living organisms. Upon ß-gal activation, Gal-Cy-Gd-1 exhibits a remarkable 42-fold increase in NIR fluorescence intensity at 717 nm, allowing covalent labeling of adjacent target enzymes or proteins and avoiding molecular escape to promote probe accumulation at the tumor site. This fluorescence reaction enhances the longitudinal relaxivity by approximately 1.9 times, facilitating high-resolution MRI. The unique features of Gal-Cy-Gd-1 enable real-time and precise visualization of ß-gal activity in live tumor cells and mice. The probe's utilization aids in identifying in situ ovarian tumors, offering valuable assistance in the precise removal of tumor tissue during surgical procedures in mice. The fusion of NIR fluorescence and MRI activation through self-immobilizing target enzymes or proteins provides a robust approach for visualizing ß-gal activity. Moreover, this approach sets the groundwork for developing other activatable bimodal probes, allowing real-time in vivo imaging of enzyme activity and localization.


Subject(s)
Neoplasms , Mice , Animals , Fluorescence , beta-Galactosidase/metabolism , Fluorescent Dyes/metabolism , Optical Imaging/methods
10.
Adv Mater ; 35(49): e2306748, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37689996

ABSTRACT

Despite its remarkable clinical breakthroughs, immune checkpoint blockade (ICB) therapy remains limited by the insufficient immune response in the "cold" tumor. Nanozyme-based antitumor catalysis is associated with precise immune activation in the tumor microenvironment (TME). In this study, a cascade-augmented nanoimmunomodulator (CMZM) with multienzyme-like activities, which includes superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and glutathione oxidase (GSHOx), that dissociates under an acidic and abundant GSH TME, is proposed for multimodal imaging-guided chemodynamic therapy (CDT)/photodynamic therapy (PDT) enhanced immunotherapy. Vigorous multienzyme-like activities can not only produce O2 to alleviate hypoxia and promote the polarization of M2 to M1 macrophages, but also generate ROS (•OH and 1 O2 ) and deplete GSH in the TME to expose necrotic cell fragments and reverse immunosuppressive TME by eliciting the maturation of dendritic cells and infiltration of cytotoxic T lymphocytes (CTLs) in tumors. Therefore, inhibitory effects on both primary and distant tumors are achieved through synergy with an α-PD-L1 blocking antibody. This cascade multienzyme-based nanoplatform provides a smart strategy for highly efficient ICB immunotherapy against "cold" tumors by revising immunosuppressive TME.


Subject(s)
Immunotherapy , Neoplasms , Humans , Reactive Oxygen Species , Peroxidase , Homeostasis , Immunosuppressive Agents , Tumor Microenvironment , Cell Line, Tumor
11.
Opt Lett ; 48(19): 5085-5088, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37773391

ABSTRACT

In this Letter, we propose a multifunctional imaging system enabled by a single geometric-phase-based liquid crystal (LC) element, which integrates chiral polarization and edge enhancement imaging. The element is located at the frequency domain plane in a 4F imaging system, and the phase profile of the element consists of a fork grating in the x direction and a grating in the y direction, which provide edge enhancement and chiral polarization imaging capabilities. Benefiting from the tunable property of the LC, the system can be switched from a polarization and edge imaging mode to the normal conventional imaging mode which is capable of conveniently acquiring the needed image information. Experiments demonstrate that the system can easily achieve multifunctional and switchable imaging, which agrees well with our design, and our LC element can work in the broadband spectrum because of the geometric phase modulation. The multifunctional strategy used here can effectively avoid the need to increase the size of the original microscopic system and the need for additional mechanical rotation of components. We believe that the proposed system with the additional advantages of electric control and tunability can find applications in biological imaging, medical detection, and optical computing.

12.
Int J Biol Sci ; 19(9): 2725-2739, 2023.
Article in English | MEDLINE | ID: mdl-37324942

ABSTRACT

Identification of mucin modulators is of remarkable significance to facilitate mucin-based antineoplastic therapy. However, little is known about circular RNAs (circRNAs) on regulating mucins. Dysregulated mucins and circRNAs were identified via high-throughput sequencing and their relationships with lung cancer survival were analyzed in tumor samples of 141 patients. The biological functions of circRABL2B were determined via gain- and loss-of-function experiments and exosome-packaged circRABL2B treatment in cells, patient-derived lung cancer organoids and nude mice. We identified that circRABL2B was negatively correlated with MUC5AC. Patients with low circRABL2B and high MUC5AC displayed the poorest survival (HR=2.00; 95% CI=1.12-3.57). Overexpressed circRABL2B significantly inhibited cell malignant phenotypes, while it knock-down exerted opposite effects. CircRABL2B interacted with YBX1 to inhibit MUC5AC, and subsequently suppressed integrin ß4/pSrc/p53 signaling and impoverished cell stemness, and promoted erlotinib sensitivity. Exosome-packaged circRABL2B exerted significant anti-cancer actions in cells, patient-derived lung cancer organoids and nude mice. Meanwhile, circRABL2B in plasma exosomes could distinguish early-stage lung cancer patients from healthy controls. Finally, we found circRABL2B was downregulated at the transcriptional level, and EIF4a3 involved the formation of circRABL2B. In conclusion, our data suggest that circRABL2B counteracts lung cancer progression via MUC5AC/integrin ß4/pSrc/p53 axis, which provides a rationale to enhance the efficacy of anti-MUCs treatment in lung cancer.


Subject(s)
Integrin beta4 , Lung Neoplasms , Animals , Mice , Mice, Nude , Down-Regulation/genetics , Integrin beta4/metabolism , RNA, Circular/genetics , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mucins/genetics , Mucins/metabolism
13.
Adv Healthc Mater ; 12(27): e2300941, 2023 10.
Article in English | MEDLINE | ID: mdl-37311077

ABSTRACT

Developing a theranostic system that integrates multimodal imaging, synergistic therapeutic, and formulation entities is a promising strategy for efficient cancer treatment. However, the complexity and safety concerns of multiple functional entities hinder their clinical translation. Herein, versatile "all-in-one" heptamethine cyanine amphiphiles (PEG-Cy-Fs) with multiple favorable capabilities, including fluorine-19 magnetic resonance imaging (19 F MRI), near-infrared fluorescence imaging (NIR FLI), photodynamic therapy (PDT), photothermal therapy (PTT), polyethylene glycolation (PEGylation) and high biocompatibility, are developed for the convenient construction of theranostic platforms. Amphiphiles PEG-Cy-Fs are synthesized on a multi-hundred-milligram scale with high efficacy, which self-assembled with a chemotherapy drug tamoxifen (TAM) into monodisperse and stable nanoparticles (SoFoTm/PEG-Cy-F18 ) with "turned on" FLI, sensitive 19 F MRI, mitochondria-targeting ability, high PDT and PTT efficacy, and PEGylation-optimized pharmacokinetics. The selective accumulation of SoFoTm/PEG-Cy-F18 in xenograft MCF-7 tumor with a long retention time (>10 days) enabled 19 F MRI-NIR FLI-guided chemo-photodynamic-photothermal therapy (chemo-PDT-PTT) of breast cancer with high therapeutical index in mice. The "all-in-one" heptamethine cyanine amphiphile may facilitate the convenient and standardized preparation of high-performance theranostics systems for clinical translation.


Subject(s)
Breast Neoplasms , Nanoparticles , Neoplasms , Photochemotherapy , Humans , Animals , Mice , Female , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/drug therapy , Photothermal Therapy , Photochemotherapy/methods , Phototherapy/methods , Nanoparticles/therapeutic use , Neoplasms/drug therapy , Theranostic Nanomedicine/methods , Cell Line, Tumor
14.
ACS Omega ; 8(8): 7684-7689, 2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36873021

ABSTRACT

The one-pot nucleophilic ring-opening reaction of oligoethylene glycol macrocyclic sulfates provides an efficient strategy for the monofunctionalization of oligoethylene glycols without protecting or activating group manipulation. In this strategy, the hydrolysis process is generally promoted by sulfuric acid, which is hazardous, difficult to handle, environmentally unfriendly, and unfit for industrial operation. Here, we explored a convenient handling solid acid, Amberlyst-15, as a replacement for sulfuric acid to accomplish the hydrolysis of sulfate salt intermediates. With this method, 18 valuable oligoethylene glycol derivatives were prepared with high efficiency, and gram-scale applicability of this method has been successfully demonstrated to afford a clickable oligoethylene glycol derivative 1b and a valuable building block 1g for F-19 magnetic resonance imaging traceable biomaterial construction.

15.
Front Bioeng Biotechnol ; 11: 1111840, 2023.
Article in English | MEDLINE | ID: mdl-36733963

ABSTRACT

Hyperviscosity syndrome (HVS) is a combination of clinical signs and symptoms related to increased blood viscosity. HVS can increase the thrombotic risk by causing a major disturbance to the blood flow, which is usually found in the advanced stages of the tumor. Moreover, some of the drugs used in chemotherapy, such as 5-fluorouracil and erythropoietin, are also capable of causing HVS through their respective pathways. Clinically, the viscosity of a patient's blood sample is measured by a rotary rheometer to estimate the risk of hyperviscosity syndrome. However, the measurement of blood viscosity in vitro is easily affected by storage time, storage environment, and anticoagulants. In addition, the fluid conditions in the rheometer are quite different from those in natural blood vessels, making this method inappropriate for evaluating blood viscosity and its effects in vivo under physiological condition. Herein, we presented a novel magnetic resonance imaging method called local-saturation-and-delay imaging (LSDI). The radial distributions of flow velocity measured by LSDI are consistent with the Ultrasonic (US) method (Spearman correlation coefficient r = 0.990). But the result of LSDI is more stable than US (p < 0.0001). With the LSDI method, we can directly measure the radial distribution of diastolic flow velocity, and further use these data to calculate the whole blood relative viscosity (WBRV) and erythrocyte aggregation trend. It was a strong correlation between the results measured by LSDI and rotary rheometer in the group of rats given erythropoietin. Furthermore, experimental results in glioma rats indicate that LSDI is equivalent to a rheometer as a method for predicting the risk of hyperviscosity syndrome. Therefore, LSDI, as a non-invasive method, can effectively follow the changes in WBRV in rats and avoid the effect of blood sampling during the experiment on the results. In conclusion, LSDI is expected to become a novel method for real-time in vivo recognition of the cancer progression and the influence of drugs on blood viscosity and RBC aggregation.

16.
ACS Appl Mater Interfaces ; 15(2): 2665-2678, 2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36604154

ABSTRACT

Although albumin has been extensively used in nanomedicine, it is still challenging to fluorinate albumin into fluorine-19 magnetic resonance imaging (19F MRI)-traceable theranostics because existing strategies lead to severe 19F signal splitting, line broadening, and low 19F MRI sensitivity. To this end, 34-cysteine-selectively fluorinated bovine serum albumins (BSAs) with a sharp singlet 19F peak have been developed as 19F MRI-sensitive and self-assembled frameworks for cancer theranostics. It was found that fluorinated albumin with a non-binding fluorocarbon and a long linker is crucial for avoiding 19F signal splitting and line broadening. With the fluorinated BSAs, paclitaxel (PTX) and IR-780 were self-assembled into stable, monodisperse, and multifunctional nanoparticles in a framework-promoted self-emulsion way. The high tumor accumulation, efficient cancer cell uptake, and laser-triggered PTX sharp release of the BSA nanoparticles enabled 19F MRI-near infrared fluorescence imaging (NIR FLI)-guided synergistic chemotherapy (Chemo), photothermal and photodynamic therapy of xenograft MCF-7 cancer with a high therapeutical index in mice. This study developed a rational synthesis of 19F MRI-sensitive albumin and a framework-promoted self-emulsion of multifunctional BSA nanoparticles, which would promote the development of protein-based high-performance biomaterials for imaging, diagnosis, therapy, and beyond.


Subject(s)
Nanoparticles , Neoplasms , Photochemotherapy , Animals , Humans , Mice , Cell Line, Tumor , Emulsions , Nanoparticles/therapeutic use , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , Paclitaxel/pharmacology , Paclitaxel/therapeutic use , Phototherapy/methods , Serum Albumin, Bovine/classification , Theranostic Nanomedicine
18.
Fundam Res ; 3(4): 481-487, 2023 Jul.
Article in English | MEDLINE | ID: mdl-38933551

ABSTRACT

Glycogen plays essential roles in glucose metabolism. Imaging glycogen in the liver, the major glycogen reservoir in the body, may shed new light on many metabolic disorders. 13C magnetic resonance spectroscopy (MRS) has become the mainstream method for monitoring glycogen in the body. However, the equipment of special hardware to standard clinical magnetic resonance imaging (MRI) scanners limits its clinical applications. Herein, we utilized endogenous glycogen as a T 2-based relaxation contrast agent for imaging glycogen metabolism in the liver in vivo. The in vitro results demonstrated that the transverse relaxation rate of glycogen strongly correlates with the concentration, pH, and field strength. Based on the Swift-Connick theory, we characterized the exchange property of glycogen and measured the exchange rate of glycogen as 31,847 Hz at 37 °C. Besides, the viscosity and echo spacing showed no apparent effect on the transverse relaxation rate. This unique feature enables visualization of glycogen signaling in vivo through T 2-weighted MRI. Two hours-post intraperitoneal injection of glucagon, a clinical drug to promote glycogenolysis and gluconeogenesis, the signal intensity of the mice's liver increased by 1.8 times from the T 2-weighted imaging experiment due to the decomposition of glycogen. This study provides a convenient imaging strategy to non-invasively investigate glycogen metabolism in the liver, which may find clinical applications in metabolic diseases.

19.
Front Bioeng Biotechnol ; 10: 1049750, 2022.
Article in English | MEDLINE | ID: mdl-36406236

ABSTRACT

As a noninvasive "hot-spot" imaging technology, fluorine-19 magnetic resonance imaging (19F MRI) has been extensively used in cell tracking. However, the peculiar physicochemical properties of perfluorocarbons (PFCs), the most commonly used 19F MRI agents, sometimes cause low sensitivity, poor cell uptake, and misleading results. In this study, a partially fluorinated agent, perfluoro-tert-butyl benzyl ether, was used to formulate a 19F MRI-fluorescence imaging (FLI) dual-modal nanoemulsion for cell tracking. Compared with PFCs, the partially fluorinated agent showed considerably improved physicochemical properties, such as lower density, shorter longitudinal relaxation times, and higher solubility to fluorophores, while maintaining high 19F MRI sensitivity. After being formulated into stable, monodisperse, and paramagnetic Fe3+-promoted nanoemulsions, the partially fluorinated agent was used in 19F MRI-FLI dual imaging tracking of lung cancer A549 cells and macrophages in an inflammation mouse model.

20.
Angew Chem Int Ed Engl ; 61(50): e202213495, 2022 12 12.
Article in English | MEDLINE | ID: mdl-36263727

ABSTRACT

Nitroreductase (NTR) is an important biomarker widely used to evaluate the degree of tumor hypoxia. Although a few optical methods have been reported for detecting nitroreductase at low concentration ranges, an effective strategy for nitroreductase monitoring in vivo without limits to the imaging depth is still lacking. Herein, a novel dual-mode NIR fluorescence and 19 F MRI agent, FCy7-NO2 , is proposed for imaging tumor hypoxia. We show that FCy7-NO2 serves as not only a rapid NIR fluorescence enhanced probe for monitoring and bioimaging of nitroreductase in tumors, but also a novel 19 F MR chemical shift-sensitive contrast agent for selectively detecting nitroreductase catalyzed reduction. Notably, integrating two complementary imaging technologies into FCy7-NO2 enables sensitive detection of nitroreductase in a broad concentration range without tissue-depth limit. In general, this agent has a remarkable response to nitroreductase, which provides a promising method for understanding tumor evolution and its physiological role in the hypoxic microenvironment.


Subject(s)
Neoplasms , Nitrogen Dioxide , Humans , Fluorescent Dyes/chemistry , Microscopy, Fluorescence/methods , Nitroreductases/chemistry , Optical Imaging/methods , Neoplasms/diagnostic imaging , Magnetic Resonance Imaging , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL