Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Calcif Tissue Int ; 106(4): 401-414, 2020 04.
Article in English | MEDLINE | ID: mdl-31912171

ABSTRACT

The aim of this study was to distinguish the characteristics of intervertebral disc degeneration (IVDD) originating from mechanics imbalance, biology disruption, and their communion, and to develop a composite IVDD model by ovariectomy combined with lumbar facetectomy for mimicking elderly IVDD with osteoporosis and lumbar spinal instability. Mice were randomly divided into four groups and subjected to sham surgery (CON), ovariectomy (OVX), facetectomy (mechanical instability, INS) or their combination (COM), respectively. Radiographical (n = 4) and histological changes (n = 8) of L4/5 spinal segments were analyzed. Tartrate-resistant acid phosphatase (TRAP) staining was conducted to detect osteoclasts, and expression of osterix (OSX), type I collagen (Col I), type II collagen (Col II) and vascular endothelial growth factor (VEGF) were evaluated by immunochemistry. OVX affected the body's metabolism but INS did not, as the body weight increased and uterus weight decreased in OVX and COM mice compared to CON and INS mice. OVX, INS, and COM caused IVDD in various degrees at 12 weeks after surgery. However, the major pathogeneses of OVX- and INS-induced IVDD were different, which focused on endplate (EP) remodeling and annulus fibrosus (AF) collapse, respectively. OVX induced osteopenia of vertebra. In contrast, INS promoted the stress-adaptive increase of subchondral bone trabeculae. The COM produced a reproducible severe IVDD model with characteristics of sparse vertebral trabeculae, cartilaginous EP ossification, subchondral bone sclerosis, fibrous matrix disorder, angiogenesis, disc stiffness, as well as space fusion. Additionally, all groups had elevated bone and cartilage turnover compared with CON group, as the quantity of trap + osteoclasts and the osteogenic OSX expression increased in these groups. Likewise, the VEGF expression levels were similar, accompanied by the altered matrix expression of disc, including the changed distribution and contents of Col II and Col I. The findings suggested that the composite mouse model to some extent could effectively mimic the interactions of biology and mechanics engaged in the onset and natural course of IVDD, which would be more compatible with the IVDD of elderly with vertebral osteoporosis and spinal instability and benefit to further clarify the complicated mechanobiological environment of elderly IVDD progression.


Subject(s)
Bone Diseases, Metabolic/metabolism , Intervertebral Disc Degeneration/surgery , Lumbar Vertebrae/surgery , Osteoporosis/surgery , Animals , Bone Density Conservation Agents/pharmacology , Bone Diseases, Metabolic/complications , Collagen Type II/drug effects , Collagen Type II/metabolism , Disease Models, Animal , Lumbar Vertebrae/metabolism , Mice , Mice, Inbred C57BL , Osteoporosis/complications
2.
Med Hypotheses ; 121: 183-187, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30396477

ABSTRACT

Osteoarthritis (OA) is one of the most common degenerative disease which causes pain and disability of joint and brings heavy socioeconomic burden in the world. However, the pathogenesis of OA has not been fully understood. Articular cartilage degradation or loss was often regarded as the characteristic of osteoarthritis. But we believe that there may had a illusion that OA was simply considered to be a process of wear and tear because evidences have supported all joint tissues remodeling including cartilage, subchondral bone, synovium, ligament, fat pad, and etc, were engaged in OA, in particular the cartilage and subchondral bone. Many factors such as mechanics, inflammation and immunological abnormality could drive the joint tissues metabolic and disturb the steady state of cartilage and bone, which further devoted to a serial pathological manifestations, consisting of hypertrophy and apoptosis of articular chondrocytes, degradation of cartilage matrix, angiogenesis and calcification of hyaline cartilage, replication of tidemark, formation of osteophytes, degeneration of ligaments and, in the knee, the menisci, hypertrophy of the joint capsule and remodeling of subchondral bone along with increased permeability of the osteochondral interface. The thickening of calcified cartilage, the thinning of superficial hyaline cartilage and the remodeling of subchondral bone indicated that the cartilage degradation could be a procedure of enchondral ossification similar to the growth plate, of driven by a host of cytokines within the affected joint. Articular cartilage loses stable state from normal resting to a high turnover in the stimulation of abnormal mechanical stresses and cytokines would subsequently contributed to slowly sustained remodeling and calcification, which might be the key features of the initiation and development of OA. In this article, the development and structural comparison of articular cartilage and growth plate as well as the major pathologic features of OA will be discussed to explain that cartilage degeneration in OA might be a process of enchondral ossification similar to growth plate. This would provide a new perspective for understanding OA's pathogenesis and the treatment in the future.


Subject(s)
Cartilage, Articular/physiopathology , Osteoarthritis/physiopathology , Osteogenesis , Animals , Apoptosis , Bone Remodeling , Bone and Bones/pathology , Cell Proliferation , Chondrocytes/cytology , Growth Plate/physiopathology , Humans , Hyaline Cartilage/pathology , Hypertrophy , Inflammation/complications , Neovascularization, Pathologic
3.
Arthritis Res Ther ; 20(1): 207, 2018 09 10.
Article in English | MEDLINE | ID: mdl-30201052

ABSTRACT

BACKGROUND: Studies on the relationship between osteoporosis and intervertebral disc degeneration (IVDD) are inconsistent. Therefore, we assessed whether IVDD is affected by vertebral osteoporosis in ovariectomized mice and investigated the underlying pathogenesis of IVDD related to osteoporosis. METHODS: Thirty healthy female C57BL/6 J mice aged 8 weeks were randomly divided into two groups: a control group (sham operation, n = 15) and an ovariectomy group (OVX; bilateral ovariectomy, n = 15). At 12 weeks after surgery, the bone quantity and microstructure in the lumbar vertebra and endplate as well as the volume of the L4/5 disc space were evaluated by microcomputed tomography (micro-CT). The occurrence and characteristic alterations of IVDD were identified via histopathological staining. The osteoclasts were detected using tartrate-resistant acid phosphatase (TRAP) staining. Type II collagen (Col II), osterix (OSX), osteopontin (OPN), and vascular endothelial growth factor (VEGF) expression in the intervertebral disc were detected by immunohistochemical analysis. RESULTS: OVX significantly increased the body weight and decreased the uterus weight. Micro-CT analysis showed that osteoporosis of the vertebra and osteochondral remodeling of the endplate were accompanied by an increase in the endplate porosity and a decrease in the disc volume in the OVX group. Likewise, histological evaluation revealed that IVDD occurred at 12 weeks after ovariectomy, with features of endochondral ossification of the endplate, loose and broken annulus fibrosus, and degeneration of nucleus pulposus. TRAP staining showed that numerous active osteoclasts appeared in the subchondral bone and cartilaginous endplate of OVX mice, whereas osteoclasts were rarely detected in control mice. Immunohistochemical analysis demonstrated that the expression of osterix was significantly increased, notably in the endplate of OVX mice. In addition, Col II was decreased in the ossification endplate and the degenerative annulus fibrosus, where OPN and VEGF expressions were elevated in OVX mice. CONCLUSIONS: OVX induced vertebral osteoporosis and osteochondral remodeling of the cartilaginous endplate contributing to the angiogenesis and an increase in porosity of the bone-cartilage surface, and also affected the matrix metabolism which consequently had detrimental effects on the intervertebral disc. Our study suggests that preserving the structural integrity and the function of the adjacent structures, including the vertebrae and endplates, may protect the disc against degeneration.


Subject(s)
Bone Remodeling/physiology , Chondrocytes/pathology , Intervertebral Disc Degeneration/pathology , Lumbar Vertebrae/pathology , Ovariectomy/adverse effects , Animals , Chondrocytes/metabolism , Female , Intervertebral Disc Degeneration/metabolism , Lumbar Vertebrae/metabolism , Mice , Mice, Inbred C57BL , Ovariectomy/trends
4.
Asian Pac J Cancer Prev ; 13(3): 753-9, 2012.
Article in English | MEDLINE | ID: mdl-22631643

ABSTRACT

Radixin, encoded by a gene on chromosome 11, plays important roles in cell motility, invasion and tumor progression. However, its function in pancreatic cancer remains elusive. In this study, radixin gene expression was suppressed with a lentivirus-mediated short-hairpin RNA (shRNA) method. We found that radixin shRNA caused down-regulation of radixin in PANC-1 cells, associated with inhibition of pancreatic cancer cell proliferation, survival, adhesion and invasive potential in vitro. When radixin-silenced cells were implanted in nude mice, tumor growth and microvessel density were significantly inhibited as compared to blank control cells or nonsense shRNA control cells. Thrombospondin-1 (TSP-1) and E-cadherin were up-regulated in radixin-silenced PANC-1 cells. Our results suggest that radixin might play a critical role in pancreatic cancer progression, possibly through involvement of down-regulation of TSP-1 and E-cadherin expression.


Subject(s)
Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , RNA Interference , Animals , Apoptosis/genetics , Cadherins/biosynthesis , Cell Adhesion , Cell Line, Tumor , Cell Proliferation , Cell Survival , Female , Gene Expression Regulation, Neoplastic , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Neoplasm Invasiveness , Neovascularization, Pathologic/genetics , Pancreatic Neoplasms/pathology , RNA, Small Interfering , Thrombospondin 1/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL