Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 107
Filter
1.
Sci Total Environ ; 950: 175357, 2024 Nov 10.
Article in English | MEDLINE | ID: mdl-39127203

ABSTRACT

Klebsiella pneumoniae (Kp) is a human symbiotic opportunistic pathogen capable of causing severe hospital-based infections and community-acquired infections. The problem of antimicrobial resistance (AMR) has become increasing serious over time, posing a major threat to socio-economic and human development. In this study, we explored the global trend of AMR in 1786 strains of Kp isolated between 1982 and 2023. The number of antibiotic resistance genes (ARGs) in Kp increased significantly from 24.29 ± 5.44 to 32.42 ± 8.52 over time. Mobile genetic elements (MGEs) were responsible for the ARGs horizontal transfer of Kp strains. The results of structural equation modeling (SEM) indicated a strong association between the human development index and the increase of antibiotic consumption, which indirectly affected the occurrence and development of antibiotic resistance in Kp. The results of Generalized Linear Models (GLM) indicated that the influence of environmental factors such as temperature on the development of Kp resistance could not be ignored. Overall, this study monitored the longitudinal trend of antimicrobial resistance in Kp, explored the factors influencing antibiotic resistance, and provided insights for mitigating the threat of antimicrobial resistance.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Bacterial , Klebsiella pneumoniae , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/genetics , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Humans , Klebsiella Infections/drug therapy , Klebsiella Infections/microbiology
2.
Heliyon ; 10(14): e34383, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39108851

ABSTRACT

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR associated nuclease (Cas) system has been proven to play an irreplaceable role in bacteria immunity activity against exogenous genetic elements. In recent years, this system has emerged as a valid gene engineering method and could be used to detect and treat various microorganisms such as bacteria and viruses, etc. Staphylococcus aureus, as a Gram-positive, opportunistic human and animal pathogen, can cause a variety of diseases greatly threatening human health. Here, we mainly reviewed the applications of the CRISPR-Cas system in Staphylococcus aureus infections in detail. Furthermore, the prospects and drawbacks of the CRISPR-Cas system were also discussed.

3.
Environ Res ; 259: 119516, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38950813

ABSTRACT

The rapid increase of mcr-positive Klebsiella pneumoniae (K. pneumoniae) has received considerable attention and poses a major public health concern. Here, we systematically analyzed the global distribution of mcr-positive K. pneumoniae isolates based on published articles as well as publicly available genomes. Combining strain information from 78 articles and 673 K. pneumoniae genomes, a total of 1000 mcr-positive K. pneumoniae isolates were identified. We found that mcr-positive K. pneumoniae has disseminated widely worldwide, especially in Asia, with a higher diversity of sequence types (STs). These isolates were disseminated in 57 countries and were associated with 12 different hosts. Most of the isolates were found in China and were isolated from human sources. Moreover, MLST analysis showed that ST15 and ST11 accounted for the majority of mcr-positive K. pneumoniae, which deserve sustained attention in further surveillance programs. mcr-1 and mcr-9 were the dominant mcr variants in mcr-positive K. pneumoniae. Furthermore, a Genome-wide association study (GWAS) demonstrated that mcr-1- and mcr-9-producing genomes exhibited different antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs), thereby indicating a distinct evolutionary path. Notably, the phylogenetic analysis suggested that certain mcr-positive K. pneumoniae genomes from various geographical areas and hosts harbored a high degree of genetic similarities (<20 SNPs), suggesting frequent cross-region and cross-host clonal transmission. Overall, our results emphasize the significance of monitoring and exploring the transmission and evolution of mcr-positive K. pneumoniae in the context of "One health".


Subject(s)
Genetic Variation , Klebsiella Infections , Klebsiella pneumoniae , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Klebsiella Infections/epidemiology , Klebsiella Infections/microbiology , Humans , Drug Resistance, Bacterial/genetics , Anti-Bacterial Agents/pharmacology , Phylogeny , Genome-Wide Association Study , Genome, Bacterial
4.
World J Gastrointest Oncol ; 16(7): 3270-3283, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39072157

ABSTRACT

BACKGROUND: Helicobacter pylori (H. pylori) colonizes the human gastric mucosa and is implicated in the development of gastric cancer (GC). The tumor microenvironment is characterized by hypoxia, where hypoxia-inducible factor-1α (HIF-1α) plays a key role as a transcription factor, but the mechanisms underlying H. pylori-induced HIF-1α expression and carcinogenesis remain unclear. AIM: To explore the underlying mechanism of H. pylori-induced HIF-1α expression in promoting the malignant biological behavior of gastric epithelial cells (GES-1). METHODS: The study was conducted with human GES-1 cells in vitro. Relative protein levels of methyltransferase-like protein 14 (METTL14), HIF-1α, main proteins of the PI3K/AKT pathway, epithelial-mesenchymal transition (EMT) biomarkers, and invasion indicators were detected by Western blot. Relative mRNA levels of METTL14 and HIF-1α were detected by quantitative reverse transcription-polymerase chain reaction. mRNA stability was evaluated using actinomycin D, and the interaction between METTL14 and HIF-1α was confirmed by immunofluorescence staining. Cell proliferation and migration were evaluated by cell counting kit-8 assay and wound healing assay, respectively. RESULTS: H. pylori promoted HIF-1α expression and activated the PI3K/AKT pathway. Notably, METTL14 was downregulated in H. pylori-infected gastric mucosal epithelial cells and positively regulated HIF-1α expression. Functional experiments showed that the overexpression of HIF-1α or knockdown of METTL14 enhanced the activity of the PI3K/AKT pathway, thereby driving a series of malignant transformation, such as EMT and cell proliferation, migration, and invasion. By contrast, the knockdown of HIF-1α or overexpression of METTL14 had an opposite effect. CONCLUSION: H. pylori-induced underexpression of METTL14 promotes the translation of HIF-1α and accelerates tumor progression by activating the PI3K/AKT pathway. These results provide novel insights into the carcinogenesis of GC.

5.
Curr Issues Mol Biol ; 46(7): 7558-7576, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39057090

ABSTRACT

The confrontation between humans and bacteria is ongoing, with strategies for combating bacterial infections continually evolving. With the advancement of RNA sequencing technology, non-coding RNAs (ncRNAs) associated with bacterial infections have garnered significant attention. Recently, long ncRNAs (lncRNAs) have been identified as regulators of sterile inflammatory responses and cellular defense against live bacterial pathogens. They are involved in regulating host antimicrobial immunity in both the nucleus and cytoplasm. Increasing evidence indicates that lncRNAs are critical for the intricate interactions between host and pathogen during bacterial infections. This paper emphatically elaborates on the potential applications of lncRNAs in clinical hallmarks, cellular damage, immunity, virulence, and drug resistance in bacterial infections in greater detail. Additionally, we discuss the challenges and limitations of studying lncRNAs in the context of bacterial infections and highlight clear directions for this promising field.

6.
Infect Med (Beijing) ; 3(2): 100114, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38974346

ABSTRACT

Background: Hand, foot, and mouth disease (HFMD) is a common childhood infectious disease caused by a variety of enteroviruses (EVs). To explore the epidemiological characteristics and etiology of HFMD in Zhengzhou, China, we conducted a systematic analysis of HFMD surveillance data from Zhengzhou Center for Disease Control and Prevention from January 2009 to December 2021 (https://wjw.zhengzhou.gov.cn/). Methods: Surveillance data were collected from Zhengzhou Center for Disease Control and Prevention from January 2009 to December 2021 (https://wjw.zhengzhou.gov.cn/). Cases were analyzed according to the time of onset, type of diagnosis, characteristics, viral serotype, and epidemiological trends. Results: We found that the primary causative agent responsible for the HFMD outbreaks in Zhengzhou was Enterovirus A71 (EVA-71) (48.56%) before 2014. After 2015, other EVs gradually became the dominant strains (57.68%). The data revealed that the HFMD epidemics in Zhengzhou displayed marked seasonality, with major peaks occurring from April to June, followed by secondary peaks from October to November, except in 2020. Both the severity and case-fatality ratio of HFMD decreased following the COVID-19 pandemic (severity ‰: 13.46 vs. 0.17; case-fatality ‰: 0.21 vs. 0, respectively). Most severe cases were observed in patients aged 1 year and below, accounting for 45.81%. Conclusions: Overall, the incidence rate of HFMD decreased in Zhengzhou following the introduction of the EVA-71 vaccine in 2016. However, it is crucial to acknowledge that HFMD prevalence continues to exhibit a distinct seasonal pattern and periodicity, and the occurrence of other EV infections poses a new challenge for children's health.

7.
World J Microbiol Biotechnol ; 40(8): 244, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38871847

ABSTRACT

In recent years, the emergence of blaOXA-encoding Escherichia coli (E. coli) poses a significant threat to human health. Here, we systematically analyzed the global geographic distribution and genetic characteristics of 328 blaOXA-positive E. coli plasmids based on NCBI database. Twelve blaOXA variants have been discovered, with blaOXA-1 (57.93%) being the most common, followed by blaOXA-10 (11.28%) and blaOXA-48 (10.67%). Our results suggested that blaOXA-positive E. coli plasmids were widespread in 40 countries, mainly in China, the United States, and Spain. MLST analysis showed that ST2, ST43, and ST471 were the top three host STs for blaOXA-positive plasmids, deserving continuing attention in future surveillance program. Network analysis revealed a correlation between different blaOXA variants and specific antibiotic resistance genes, such as blaOXA-1 and aac (6')-Ib-cr (95.79%), blaOXA-181 and qnrS1 (87.88%). The frequent detection of aminoglycosides-, carbapenems- and even colistin-related resistance genes in blaOXA-positive plasmids highlights their multidrug-resistant potential. Additionally, blaOXA-positive plasmids were further divided into eight clades, clade I-VIII. Each clade displayed specificity in replicon types and conjugative transfer elements. Different blaOXA variants were associated with specific plasmid lineages, such as blaOXA-1 and IncFII plasmids in clade II, and blaOXA-48 and IncL plasmids in clade I. Overall, our findings provide a comprehensive insight into blaOXA-positive plasmids in E. coli, highlighting the role of plasmids in blaOXA dissemination in E. coli.


Subject(s)
Anti-Bacterial Agents , Escherichia coli , Multilocus Sequence Typing , Plasmids , beta-Lactamases , Escherichia coli/genetics , Escherichia coli/enzymology , Plasmids/genetics , beta-Lactamases/genetics , Anti-Bacterial Agents/pharmacology , Escherichia coli Proteins/genetics , Humans , Escherichia coli Infections/microbiology , Microbial Sensitivity Tests , Drug Resistance, Multiple, Bacterial/genetics , China , Drug Resistance, Bacterial/genetics , Phylogeny
8.
Pathogens ; 13(6)2024 May 21.
Article in English | MEDLINE | ID: mdl-38921732

ABSTRACT

Staphylococcus aureus (S. aureus) is a major human pathogen and can cause a wide range of diseases, including pneumonia, osteomyelitis, skin and soft tissue infections (SSTIs), endocarditis, mastitis, bacteremia, and so forth. Rats have been widely used in the field of infectious diseases due to their unique advantages, and the models of S. aureus infections have played a pivotal role in elucidating their pathogenic mechanisms and the effectiveness of therapeutic agents. This review outlined the current application of rat models in S. aureus infections and future prospects for rat models in infectious diseases caused by S. aureus.

9.
Gene ; 921: 148527, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38710293

ABSTRACT

The E6 protein is a known oncogene in cervical cancer and plays a key role in the development and progression of cervical cancer by reducing the expression level of the tumor suppressor protein P53 and ultimately leading to enhanced cell proliferation and reduced apoptosis. Therefore, antiviral agents that inhibit the expression of E6 oncoprotein are expected to be potential therapies for human cervical cancer. Here we developed CRISPR/Cas13a: crRNA dual plasmid system and demonstrated that CRISPR/Cas13a could effectively and specifically knock down human papillomavirus 18 E6 mRNA, downregulate the expression level of E6 protein, and restore the expression of the tumor suppressor gene P53 protein, thereby inhibiting the growth of cervical cancer cells and increasing their apoptosis, the E6-2, E6-3, and E6-5 groups resulted in apoptosis rates of 25.4%, 22.4%, and 22.2% in HeLa cells. Moreover, CRISPR/Cas13a enhances the proliferation inhibition and apoptosis induction of cisplatin in cervical cancer HeLa cells. The CRISPR/Cas13a system targeting HPV E6 mRNA may be a promising therapeutic approach for the treatment of human papillomavirus-associated cervical cancer.


Subject(s)
Apoptosis , CRISPR-Cas Systems , Cell Proliferation , Human papillomavirus 18 , Oncogene Proteins, Viral , Uterine Cervical Neoplasms , Humans , HeLa Cells , Oncogene Proteins, Viral/genetics , Oncogene Proteins, Viral/metabolism , Female , Uterine Cervical Neoplasms/virology , Uterine Cervical Neoplasms/genetics , Apoptosis/genetics , Cell Proliferation/genetics , Human papillomavirus 18/genetics , Human papillomavirus 18/pathogenicity , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Papillomavirus Infections/genetics , Papillomavirus Infections/virology , Cisplatin/pharmacology , DNA-Binding Proteins
10.
Virology ; 591: 109989, 2024 03.
Article in English | MEDLINE | ID: mdl-38219371

ABSTRACT

Enteroviruses (EVs), comprise a genus in the Picornaviridae family, which have been shown to be neurotropic and can cause various neurological disorders or long-term neurological condition, placing a huge burden on society and families. The blood-brain barrier (BBB) is a protective barrier that prevents dangerous substances from entering the central nervous system (CNS). Recently, numerous EVs have been demonstrated to have the ability to disrupt BBB, and further lead to severe neurological damage. However, the precise mechanisms of BBB disruption associated with these EVs remain largely unknown. In this Review, we focus on the molecular mechanisms of BBB dysfunction caused by EVs, emphasizing the invasiveness of enterovirus A71 (EVA71), which will provide a research direction for further treatment and prevention of CNS disorders.


Subject(s)
Enterovirus Infections , Enterovirus , Humans , Blood-Brain Barrier , Enterovirus/physiology , Central Nervous System , Biological Transport
11.
Int J STD AIDS ; 35(5): 326-336, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38087772

ABSTRACT

Purpose: Influenza vaccination of person living with HIV (PLWH) is a powerful means to tackle severe clinical outcomes. Few data on two doses of influenza vaccine in PLWH are available.Research Design: To evaluate the immunogenicity and safety of two doses of vaccine as compared with single dose in PLWH, we searched Pubmed, Embase, and web of science databases for relevant articles (January 2009 to April 2023). Pooled SMD or RR and 95% CI were calculated.Results: A total of 2436 participants from 14 studies were included. Compared to single dose influenza vaccine regimen, the pooled RR of seroprotection and seroconversion for two doses of vaccines was 1.14 (95%CI: 1.08-1.21) and 1.25 (95%CI: 1.16-1.34), respectively; the SMD of GMT was 0.42 (95%CI: 0.35, 0.49). Regarding safety, the fever risk in PLWH receiving two doses of vaccine was 3.42 fold higher than that of single dose vaccine, and the risk of myalgia had a quarter reduction. No serious vaccine-related adverse events were reported.Conclusions: Collectively, two doses of the vaccine are associated with a better immunogenicity and an acceptable safety in PLWH. Two doses of the adjuvant vaccination might be a superior vaccination regimen.nation regimen.


Subject(s)
Immunogenicity, Vaccine , Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Influenza, Human , Humans , Adjuvants, Immunologic , Antibodies, Viral , Influenza Vaccines/immunology , Influenza, Human/prevention & control , Vaccination , HIV Infections
12.
Int J Antimicrob Agents ; 63(2): 107070, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38141834

ABSTRACT

Bacillary dysentery caused by Shigella spp. is a significant concern for human health. Small non-coding RNA (sRNA) plays a crucial role in regulating antibiotic resistance and virulence in Shigella spp. However, the specific mechanisms behind this phenomenon are still not fully understood. This study discovered two sRNAs (sRNA1039 and sRNA1600) that may be involved in bacterial resistance and virulence. By constructing deletion mutants (WT/ΔSR1039 and WT/ΔSR1600), this study found that the WT/ΔSR1039 mutants caused a two-fold increase in sensitivity to ampicillin, gentamicin and cefuroxime, and the WT/ΔSR1600 mutants caused a two-fold increase in sensitivity to cefuroxime. Furthermore, the WT/ΔSR1600 mutants caused a decrease in the adhesion and invasion of bacteria to HeLa cells (P<0.01), and changed the oxidative stress level of bacteria to reduce their survival rate (P<0.001). Subsequently, this study explored the molecular mechanisms by which sRNA1039 and sRNA1600 regulate antibiotic resistance and virulence. The deletion of sRNA1039 accelerated the degradation of target gene cfa mRNA and reduced its expression, thereby regulating the expression of pore protein gene ompD indirectly and negatively to increase bacterial sensitivity to ampicillin, gentamicin and cefuroxime. The inactivation of sRNA1600 reduced the formation of persister cells to reduce resistance to cefuroxime, and reduced the expression of type-III-secretion-system-related genes to reduce bacterial virulence by reducing the expression of target gene tomB. These results provide new insights into Hfq-sRNA-mRNA regulation of the resistance and virulence network of Shigella sonnei, which could potentially promote the development of more effective treatment strategies.


Subject(s)
Dysentery, Bacillary , RNA, Small Untranslated , Shigella , Humans , Shigella sonnei/genetics , Virulence/genetics , HeLa Cells , Cefuroxime/metabolism , Shigella flexneri/genetics , Dysentery, Bacillary/microbiology , Ampicillin/pharmacology , Ampicillin/metabolism , Drug Resistance, Microbial , Gentamicins , RNA, Messenger , RNA, Small Untranslated/genetics , RNA, Small Untranslated/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism
13.
Epidemics ; 45: 100719, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37783112

ABSTRACT

BACKGROUND: The corona virus disease 2019 (COVID-19) pandemic has spread to more than 210 countries and regions around the world, with different characteristics recorded depending on the location. A systematic summarization of COVID-19 outbreaks that occurred during the "dynamic zero-COVID" policy period in Chinese mainland had not been previously conducted. In-depth mining of the big data from the past two years of the COVID-19 pandemics must be performed to clarify their epidemiological characteristics and dynamic transmissions. METHODS: Trajectory clustering was used to group epidemic and time-varying reproduction number (Rt) curves of mass outbreaks into different models and reveal the epidemiological characteristics and dynamic transmissions of COVID-19. For the selected single-peak epidemic curves, we constructed a peak-point judgment model based on the dynamic slope and adopted a single-peak fitting model to identify the key time points and peak parameters. Finally, we developed an extreme gradient boosting-based prediction model for peak infection cases based on the total number of infections on the first 3, 5, and 7 days of the initial average incubation period. RESULTS: (1) A total of 7 52298 cases, including 587 outbreaks in 251 cities in Chinese mainland between June 11, 2020, and June 29, 2022, were collected, and the first wave of COVID-19 outbreaks was excluded. Excluding the Shanghai outbreak in 2022, the 586 remaining outbreaks resulted in 1 25425 infections, with an infection rate of 4.21 per 1 00000 individuals. The number of outbreaks varied based on location, season, and temperature. (2) Trajectory clustering analysis showed that 77 epidemic curves were divided into four patterns, which were dominated by two single-peak clustering patterns (63.3%). A total of 77 Rt curves were grouped into seven patterns, with the leading patterns including four downward dynamic transmission patterns (74.03%). These curves revealed that the interval from peak to the point where the Rt value dropped below 1 was approximately 5 days. (3) The peak-point judgment model achieved a better result in the area under the curve (0.96, 95% confidence interval = 0.90-1.00). The single-peak fitting results on the epidemic curves indicated that the interval from the slow-growth point to the sharp-decline point was approximately 4-6 days in more than 50% of mass outbreaks. (4) The peak-infection-case prediction model exhibited the superior clustering results of epidemic and Rt curves compared with the findings without grouping. CONCLUSION: Overall, our findings suggest the variation in the infection rates during the "dynamic zero-COVID" policy period based on the geographic division, level of economic development, seasonal division, and temperature. Trajectory clustering can be a useful tool for discovering epidemiological characteristics and dynamic transmissions, judging peak points, and predicting peak infection cases using different patterns.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , Pandemics , SARS-CoV-2 , China/epidemiology , Disease Outbreaks
14.
J Infect Dis ; 2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37738556

ABSTRACT

Coxsackievirus (CV) A6 is currently considered as a predominant pathogen of hand, foot, and mouth disease (HFMD), and is occasionally linked to myocardial injury. We first established a mouse model of CVA6-induced myocardial injury. Next, we analyzed the immune cell phenotypes CVA6-infected mice hearts by FACS, and found that CVA6 led to massive neutrophils infiltration, suggesting their potential link with the occurrence of myocardial injury. We further used either αGr-1 or αLy6G antibody to deplete neutrophils, and found that neutrophil-depleted animals showed decreased cardiac enzymes, lower degree pathology in hearts, and reduced inflammatory cytokine production compared to isotype controls. Finally, we confirmed the involvement of neutrophils in myocardial injury of clinical patients with severe HFMD. Overall, our study suggests that excessive neutrophils contribute to myocardial injury caused by CVA6 infection, which provides new insight into myocardial injury during the development of HFMD severity and the outcome of immune cell-mediated therapies.

15.
Vaccine ; 41(43): 6470-6482, 2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37718187

ABSTRACT

Coxsackievirus A2 (CVA2) is one of the causative agents of hand-foot-and-mouth disease (HFMD), which poses a great challenge for global public health. However, presently, there are no available commercial vaccines or antivirals to prevent CVA2 infection. Here, we present an inactivated Vero cell-based whole CVA2 vaccine candidate and evaluate its safety and efficacy in this study. Neonatal BALB/c mice were vaccinated at 5 and 7 days old, respectively, and then challenged with either homologous or heterologous strain of CVA2 at a lethal dose at 10 days old. The inactivated whole CVA2 vaccine candidate showed a high protective efficacy. Additionally, our inactivated vaccine stimulated the production of CVA2-specific IgG1 and IgG2a antibodies in vivo and high titers of neutralization antibodies (NtAbs) in the serum of immunized mice. Maternal immunization with the inactivated CVA2 vaccine provided full protection to pups against lethal infection. Compared with mice inoculated with only alum, the viral loads were decreased, and pathological changes were relieved in tissue samples of immunized mice. Moreover, the transcription levels of some genes related to cytokines (IFN-γ and TNF-α, MCP-1, IL-6, CXCL-10 etc.) were significantly reduced. The number of immune cells and levels of cytokines in peripheral blood of mice inoculated with only alum were higher than that of immunized mice. It is noteworthy that this vaccine showed a good cross-immunity efficacy against Enterovirus A71 (EVA71) challenge. In conclusion, our findings suggest that this experimental inactivated CVA2 vaccine is a promising component of polyvalent vaccines related to HFMD in the near future.

16.
Lett Appl Microbiol ; 76(9)2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37715312

ABSTRACT

Klebsiella variicola, an emerging human pathogen, poses a threat to public health. The horizontal gene transfer (HGT) of plasmids is an important driver of the emergence of multiple antibiotic-resistant K. variicola. Clustered regularly interspersed short palindromic repeats (CRISPR) coupled with CRISPR-associated genes (CRISPR/Cas) constitute an adaptive immune system in bacteria, and can provide acquired immunity against HGT. However, the information about the CRISPR/Cas system in K. variicola is still limited. In this study, 487 genomes of K. variicola obtained from the National Center for Biotechnology Information database were used to analyze the characteristics of CRISPR/Cas systems. Approximately 21.56% of genomes (105/487) harbor at least one confirmed CRISPR array. Three types of CRISPR/Cas systems, namely the type I-E, I-E*, and IV-A systems, were identified among 105 strains. Spacer origin analysis further revealed that approximately one-third of spacers significantly match plasmids or phages, which demonstrates the implication of CRISPR/Cas systems in controlling HGT. Moreover, spacers in K. variicola tend to target mobile genetic elements from K. pneumoniae. This finding provides new evidence of the interaction of K. variicola and K. pneumoniae during their evolution. Collectively, our results provide valuable insights into the role of CRISPR/Cas systems in K. variicola.


Subject(s)
Bacteriophages , Clustered Regularly Interspaced Short Palindromic Repeats , Humans , Klebsiella/genetics , Plasmids/genetics , Bacteriophages/genetics , Klebsiella pneumoniae/genetics
17.
Mol Genet Genomics ; 298(6): 1407-1417, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37684555

ABSTRACT

CRISPR (clustered regularly interspaced short palindromic repeats)/Cas (CRISPR-associated protein) system is a crucial adaptive immune system for bacteria to resist foreign DNA infection. In this study, we investigated the prevalence and diversity of CRISPR/Cas systems in 175 Klebsiella oxytoca (K. oxytoca) strains. Specifically, 58.86% (103/175) of these strains possessed at least one confirmed CRISPR locus. Two CRISPR/Cas system types, I-F and IV-A3, were identified in 69 strains. Type I-F system was the most prevalent in this species, which correlated well with MLST. Differently, type IV-A3 system was randomly distributed. Moreover, the type IV-A3 system was separated into two subgroups, with subgroup-specific cas genes and repeat sequences. In addition, spacer origin analysis revealed that approximately one-fifth of type I-F spacers and one-third of type IV-A3 spacers had a significant match to MGEs. The phage tail tape measure protein and conjunctive transfer system protein were important targets of type I-F and IV-A3 systems in K. oxytoca, respectively. PAM sequences were inferred to be 5'-NCC-3' for type I-F, 5'-AAG-3' for subgroup IV-A3-a, and 5'-AAN-3' for subgroup IV-A3-b. Collectively, our findings will shed light on the prevalence, diversity, and functional effects of the CRISPR/Cas system in K. oxytoca.


Subject(s)
CRISPR-Cas Systems , Klebsiella oxytoca , Klebsiella oxytoca/genetics , CRISPR-Cas Systems/genetics , Multilocus Sequence Typing
18.
J Infect Dis ; 228(6): 800-809, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37392466

ABSTRACT

Staphylococcus aureus (S. aureus) is an important pathogen for humans and can cause a wide range of diseases, from mild skin infections, severe osteomyelitis to fatal pneumonia, sepsis, and septicemia. The mouse models have greatly facilitated the development of S. aureus studies. However, due to the substantial differences in immune system between mice and humans, the conventional mouse studies are not predictive of success in humans, in which case humanized mice may overcome this limitation to some extent. Humanized mice can be used to study the human-specific virulence factors produced by S. aureus and the mechanisms by which S. aureus interacts with humans. This review outlined the latest advances in humanized mouse models used in S. aureus studies.


Subject(s)
Osteomyelitis , Sepsis , Staphylococcal Infections , Mice , Humans , Animals , Staphylococcus aureus , Virulence Factors , Disease Models, Animal
19.
J Med Virol ; 95(7): e28939, 2023 07.
Article in English | MEDLINE | ID: mdl-37409616

ABSTRACT

Some children infected with hand, foot, and mouth disease (HFMD) caused by enterovirus 71 (EV71) progressed to severe disease with various neurological complications in the short term, with a poor prognosis and high mortality. Studies had revealed that RNA N6 -methyladenosine (m6 A) modification had a significant impact on EV71 replication, but it was unknown how m6 A modification regulated the host cell's innate immune response brought on by EV71 infection. We used MeRIP-seq (methylation RNA immunoprecipitation sequencing), RNA-seq (RNA sequencing), cell transfection, and other techniques. MeRIP-seq and RNA-seq results showed the m6 A methylation modification map of control and EV71-infected groups of RD cells. And multilevel validation indicated that decreased expression of demethylase FTO (fat mass and obesity-associated protein) was responsible for the elevated total m6 A modification levels in EV71-infected RD cells and that thioredoxin interacting protein (TXNIP) may be a target gene for demethylase FTO action. Further functional experiments showed that demethylase knockdown of FTO promoted TXNIP expression, activation of NLRP3 inflammasome and promoted the release of proinflammatory factors in vitro, and the opposite result occurred with demethylase FTO overexpression. And further tested in an animal model of EV71 infection in vitro, with results consistent with in vitro. Our findings elucidated that depletion of the demethylase FTO during EV71 infection increased the m6 A modification level of TXNIP mRNA 3' untranslated region (UTR), enhancing mRNA stability, and promoting TXNIP expression. Consequently, the NLRP3 inflammasome was stimulated, leading to the release of proinflammatory factors and facilitating HFMD progression.


Subject(s)
Enterovirus A, Human , Enterovirus Infections , Enterovirus , Hand, Foot and Mouth Disease , Animals , Enterovirus/genetics , Enterovirus A, Human/genetics , Hand, Foot and Mouth Disease/genetics , Inflammasomes/genetics , Methylation , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , RNA , Humans
20.
Environ Sci Pollut Res Int ; 30(37): 86521-86539, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37418185

ABSTRACT

Staphylococcus aureus (S. aureus) is a fearsome bacterial pathogen that can colonize and infect humans and animals. Depending on the different sources, MRSA is classified as hospital-associated methicillin-resistant S. aureus (HA-MRSA), community-associated MRSA (CA-MRSA), and livestock-associated MRSA (LA-MRSA). LA-MRSA is initially associated with livestock, and clonal complexes (CCs) were almost always 398. However, the continued development of animal husbandry, globalization, and the widespread use of antibiotics have increased the spread of LA-MRSA among humans, livestock, and the environment, and other clonal complexes such as CC9, CC5, and CC8 have gradually emerged in various countries. This may be due to frequent host switching between humans and animals, as well as between animals. Host-switching is typically followed by subsequent adaptation through acquisition and/or loss of mobile genetic elements (MGEs) such as phages, pathogenicity islands, and plasmids as well as further host-specific mutations allowing it to expand into new host populations. This review aimed to provide an overview of the transmission characteristics of S. aureus in humans, animals, and farm environments, and also to describe the main prevalent clones of LA-MRSA and the changes in MGEs during host switching.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Animals , Humans , Livestock , Farms , Staphylococcus aureus , Staphylococcal Infections/veterinary , Staphylococcal Infections/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL