Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Environ Sci (China) ; 144: 26-34, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38802235

ABSTRACT

Tri (2-chloropropyl) phosphate (TCPP) was an emerging contaminant of global concern because of its frequent occurrence, potential toxic effects, and persistence in the environment. Microbial degradation might be an efficient and safe removal method, but limited information was available. In this study, Providencia rettgeri was isolated from contaminated sediment and showed it could use TCPP as unique phosphorus source to promote growth, and decompose 34.7% of TCPP (1 mg/L) within 5 days. The microbial inoculation and the initial concentration of TCPP could affect the biodegradation efficient. Further study results indicated that TCPP decomposition by Providencia rettgeri was mainly via phosphoester bond hydrolysis, evidenced by the production of bis (2-chloropropyl) phosphate (C6H13Cl2PO4) and mono-chloropropyl phosphate (C3H8ClPO4). Both intracellular and extracellular enzymes could degrade TCPP, but intracellular degradation was dominant in the later reaction stage, and the presence of Cu2+ ions had a promoting effect. These findings developed novel insights into the potential mechanism of TCPP microbial degradation.


Subject(s)
Biodegradation, Environmental , Providencia , Providencia/metabolism , Phosphates/metabolism , Water Pollutants, Chemical/metabolism
2.
Front Microbiol ; 13: 1015949, 2022.
Article in English | MEDLINE | ID: mdl-36274704

ABSTRACT

This study researched microbial community succession in response to sludge composting efficiency and heavy metal detoxification during municipal sludge co-composting with spent mushroom and spent bleaching. The change law of key physicochemical properties, the heavy metals contents and forms during composting were analyzed, and the passivation of heavy metals after composting was explored. High-throughput sequencing was used to analyze the microbial community structure of treat 2 during composting, and the correlation analysis of microbial community structure with heavy metal contents and forms were carried out. The results showed that the sludge of each treatment reached composting maturity after 26 days of composting. Organic matter content, electrical conductivity, pH and seed germination index of treat 2 were all in line with the standard limit of agricultural sludge. Because of the presence of compost bacteria addition, the passivating heavy metals performance of treat 2 satisfied the standard limit of agricultural sludge after composting, which was superior to that of treat 1 and treat 3. The diversity of microbial communities in treat 2 decreased during composting. Extensive bacteria such as Bacillus, Geobacter, Lactobacillus, and Pseudomonas, which possessed the abilities of heavy metal passivation and organic oxidizing, were dominant in treat 2 during the heating stage. However, as composting proceeded, Tuberibacillus with ability of organic oxidizing gradually became the most dominant species at the thermophilic and cooling stages. Changes in microbial function varied from changes of microbial community in treat 2, subsequently affected the performances of heavy metal passivation and organic oxidizing during composting.

3.
J Hazard Mater ; 403: 124038, 2021 02 05.
Article in English | MEDLINE | ID: mdl-33265052

ABSTRACT

Aerobic degradation of 2, 2', 4, 4'-tetrabrominated diphenyl ether (BDE-47) by Pseudomonas aeruginosa YH (P. aeruginosa YH) were investigated in this study. BDE-47 degradation was mainly through the biological action of intracellular enzymes, and the metabolites included debrominated metabolites (BDE-28 and BDE-7), hydroxylated metabolites (6-OH-BDE-47, 5-OH-BDE-47, 2'-OH-BDE-28 and 4'-OH-BDE-17), and brominated phenols (2,4-DBP and 4-BP). P. aeruginosa YH also exhibited exceptional ability to degrade intermediates, and the degradation rates of 50 µg/L BDE-28, BDE-7, and 2,4-DBP were 68.4%, 82.3% and 92.7% on the 5th day, separately. Transcriptome sequencing revealed that 991 genes were up-regulated, and 923 genes were down-regulated in P. aeruginosa YH after exposure to 0.5 mg/L BDE-47 (FDR ≤ 0.001, |log2Ratio| ≥ 1). The differentially expressed genes were related to transport, metabolism and stress response. Harf inhibitory concentration (IC50) of BDE-47 decreased from 167.5 mg/L to 68.4 mg/L when multidrug efflux pump was inactivated by 20 mg/L andrographolide, indicating that it helped the bacterial tolerance against BDE-47. Moreover, efflux pump inhibition would accelerate the adsorption of BDE-47. The adsorption rate obtained equilibrium at approximately 70% in 2 days, while 5 days in the control group. Degradation efficiency of 2 mg/L BDE-47 decreased from 26.8% to 13.9% when multidrug efflux was suppressed.


Subject(s)
Halogenated Diphenyl Ethers , Pseudomonas aeruginosa , Biotransformation , Gene Expression Profiling , Pseudomonas aeruginosa/genetics
4.
Sci Total Environ ; 746: 140956, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-32745848

ABSTRACT

To reduce the potential risks of contamination of antibiotics and heavy metals to ecological environment and human safety, biological removal of these composite pollutants is the focus of much study. One previously identified isolate, Sakaguchia cladiensis A5, was used to decompose sulfamethazine (SMZ) and adsorb Cu2+. The ability of A5 to remove SMZ was enhanced by pre-induced culture, which reached 49.8% on day 9. The removal of SMZ could be also increased to 37.6% on day 3 in the presence of Cu2+, but only to 12.2% in the system without Cu2+. The biosorption of Cu2+ mainly occurred on the cell walls, while the biodegradation of SMZ was inside the cells. By comparative transcriptome analysis for A5, 1270 and 2220 differentially expressed genes (DEGs) were identified after treating single SMZ and SMZ/Cu2+, respectively. The Gene expression pattern analysis suggested a suppression of transcriptional changes in A5 responding to SMZ/Cu2+ as compared to under the sole stress of SMZ. The DEGs functional enrichment analysis suggested that the antioxidant and sulfate assimilation pathways played a key role on SMZ biodegradation and Cu2+ biosorption. The DEGs of proteins CAT, PRDX5, SAT, and CYSC were up-regulated to facilitate the resistance of A5 against oxidative toxicity of Cu2+. Moreover, the protein MET30 activated by Cu2+ was also overexpressed to promote the transmembrane transport of SMZ, such that A5 could decompose SMZ more effectively in SMZ/Cu2+ system. The results of this study would provide new insights into the mechanism of biodegradation and biosorption of SMZ/Cu2+.


Subject(s)
Anti-Bacterial Agents , Sulfamethazine , Biodegradation, Environmental , Gene Expression Profiling , Humans
5.
J Hazard Mater ; 308: 335-42, 2016 May 05.
Article in English | MEDLINE | ID: mdl-26852209

ABSTRACT

Decabromodiphenyl ether (BDE-209) is one of the most commonly used brominated flame retardants that have contaminated the environment worldwide. Microbial bioremediation has been considered as an effective technique to remove these sorts of persistent organic pollutants. Enterococcus casseliflavus, a gram-positive bacterium capable of aerobically transforming BDE-209, was isolated by our team from sediments in Guiyu, an e-waste dismantling area in Guangdong Province, China. To promote microbial bioremediation of BDE-209 and elucidate the mechanism behind its aerobic degradation, the effects of BDE-209 on the cell changes of E. casseliflavus were examined in this study. The experimental results demonstrated that the high cell surface hydrophobicity (CSH) of E. casseliflavus made the bacteria absorb hydrophobic BDE-209 more easily. E. casseliflavus responded to BDE-209 stress, resulting in an increase in cell membrane permeability and accumulation of BDE-209 inside the cell. The differential expression of intracellular protein was analyzed through two-dimensional gel electrophoresis (2-DE). More than 50 differentially expressed protein spots were reproducibly detected, including 25 up, and 25 down regulated after a 4 days exposure. Moreover, the apoptotic-like cell changes were observed during E. casseliflavus mediated degradation of BDE-209 by means of flow cytometry.


Subject(s)
Enterococcus/metabolism , Environmental Pollutants/metabolism , Flame Retardants/metabolism , Halogenated Diphenyl Ethers/metabolism , Aerobiosis , Apoptosis , Biodegradation, Environmental , Cell Membrane Permeability , China , Electronic Waste , Enterococcus/chemistry , Enterococcus/isolation & purification , Environmental Pollutants/chemistry , Environmental Pollutants/toxicity , Flame Retardants/toxicity , Halogenated Diphenyl Ethers/chemistry , Halogenated Diphenyl Ethers/toxicity
6.
Chemosphere ; 150: 24-32, 2016 May.
Article in English | MEDLINE | ID: mdl-26891353

ABSTRACT

Simultaneous Cr(VI) removal and 2,2',4,4'-tetra brominated diphenyl ether (BDE-47) biodegradation by Pseudomonas aeruginosa in liquid medium were investigated in this study, with the goal of elucidating the interaction between concomitant pollutants Cr(VI) and BDE-47 during microbial remediation. The experimental results revealed that the degradation efficiency of 1 mg L(-1) BDE-47 by 60 mg L(-1) biomass achieved 51.3% within 7 d when 2 mg L(-1) Cr(VI) coexisted. The degradation efficiency was accelerated at low concentrations of Cr(VI) (≤5 mg L(-1)), but inhibited at higher levels (≥10 mg L(-1)). Cr(VI) of 2 mg L(-1) facilitated the secretion of rhamnolipid from the strain, altered cell surface hydrophobicity and cell membrane permeability, and promoted intracellular BDE-47 accumulation, thus improving BDE-47 biotransformation. In addition, the stimulation of intracellular enzyme synthesis by 2 mg L(-1) Cr(VI) contributed to more BDE-47 elimination in the cells. The achievement of BDE-47 biodegradation was coupled with cell growth, enzyme extraction, cell membrane permeability change, and ATPase activity increase. The study also indicated that the improvement of Cr(VI) removal in BDE-47/Cr(VI) co-contaminated condition was mostly due to the increasing synthesis of extracellular enzyme in the presence of low concentrations of BDE-47. The whole study demonstrated that P. aeruginosa was available for the removal of toxic Cr(VI) and degradation of BDE-47 simultaneously in the liquid.


Subject(s)
Chromium/metabolism , Culture Media/metabolism , Halogenated Diphenyl Ethers/metabolism , Pseudomonas aeruginosa/metabolism , Biodegradation, Environmental , Polybrominated Biphenyls/metabolism
7.
Bioresour Technol ; 204: 26-31, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26771922

ABSTRACT

Previous studies have confirmed that Stenotrophomonas maltophilia can bind an appreciable amount of Cu(II) and degrade BaP. However, the removal mechanisms of Cu(II) coexisted with BaP by S. maltophilia are still unclear. In this study, the micro-interaction of contaminants on the cellular surface was investigated. The results indicated that carboxyl groups played an important role in the binding of copper to the thallus and that the cell walls were the main adsorption sites. Nevertheless, these reactive groups had no obvious effect on the uptake of BaP. Instead, the disruption and modification of cell walls accelerated transportation of BaP across the membrane into cells. The observation of SEM-EDS confirmed that Cu(II) would be adsorbed and precipitated onto the cell surface but would also be removed by extracellular precipitation when BaP coexisted. And the XPS analysis reflected that part of Cu(II) bound onto biosorbents changed into Cu(I) and Cu.


Subject(s)
Benzo(a)pyrene/metabolism , Copper/metabolism , Stenotrophomonas maltophilia/metabolism , Water Pollutants, Chemical/metabolism , Adsorption , Benzo(a)pyrene/chemistry , Biodegradation, Environmental , Biotransformation , Cell Membrane/metabolism , Copper/chemistry , Hazardous Substances/analysis , Surface Properties , Water Pollutants, Chemical/chemistry
8.
Huan Jing Ke Xue ; 36(1): 252-8, 2015 Jan.
Article in Chinese | MEDLINE | ID: mdl-25898672

ABSTRACT

In microcystin-LR (MC-LR) degradation system, the change in surface characteristics and cell viability of Pseudomonas putida was studied. The purpose of this study was to reveal the influence of MC-LR on P. putida and elucidate the toxicity of MC-LR on microorganisms. The result demonstrated that MC-LR enhanced the cytoplasmic membrane permeability, as well as affected the ion metabolism and protein release of P. putida. The soluble sugar and Na+, Cl-release increased with the rising concentration of MC-LR ranging from 0 mg x L(-1) to 2.0 mg x L(-1). Flow Cytometry Method(FCM) analysis revealed that MC-LR accelerated the death of P. putida, and the death rate increased with the ascending concentration of MC-LR. Compared with the control, the death rate on day 5 increased by nearly 30% when 2.5 mg x L(-1) MC-LR was added. Scanning electron microscopy (SEM) analysis showed that the cells were deformed under the toxicity of MC-LR. After 5-day exposure to 2.5 mg x L(-1) MC-LR, the majority of the cells were ruptured and the intracellular materials flew out. The cellular structure was severely damaged under this condition.


Subject(s)
Microcystins/chemistry , Pseudomonas putida/cytology , Marine Toxins , Microbial Viability
9.
Ecotoxicol Environ Saf ; 115: 166-73, 2015 May.
Article in English | MEDLINE | ID: mdl-25700095

ABSTRACT

Biodegradation has been proposed as an effective approach to remove pyrene, however, the information regarding cellular responses to pyrene treatment is limited thus far. In this study, the biodegradation and biosorption of pyrene by Brevibacillus brevis, along with cellular responses caused by pollutant were investigated by means of flow cytometry assay and scanning electron microscopy. The experimental results showed that pyrene was initially adsorbed by B. brevis and subsequently transported and intracellularly degraded. During this process, pyrene removal was primarily dependent on biodegradation. Cell invagination and cell surface corrugation occurred due to pyrene exposure. Nevertheless, cell regrowth after 96h treatment was observed, and the proportion of necrotic cell was only 2.8% after pyrene exposure for 120h, confirming that B. brevis could utilize pyrene as a sole carbon source for growth. The removal and biodegradation amount of pyrene (1mg/L) at 168h were 0.75 and 0.69mg/L, respectively, and the biosorption amount by inactivated cells was 0.41mg/L at this time.


Subject(s)
Brevibacillus/metabolism , Pyrenes/metabolism , Water Pollutants, Chemical/metabolism , Adsorption , Biodegradation, Environmental
10.
Bioresour Technol ; 158: 181-7, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24603491

ABSTRACT

Microbial remediation has been proposed as a promising technique to remove pollutions, however, its application has been hindered by the lack of understanding the mechanisms involved in contaminants conversion and the influence of pollutants on cellular characteristics. To address this problem, biodegradation and transformation of BaP-Cu(II) by Stenotrophomonas maltophilia, along with interactions of these pollutants with microbial cells through FCM assay were investigated. The results indicated that BaP and Cu(II) were rapidly removed by S. maltophilia on the 1st d, but only less than 10% BaP was broken down due to temporary store in cells, instead of being decomposed immediately. The key ATP enzymes in cells were then activated by BaP to promote bacteria to further decompose BaP. Stimulation of co-existed contaminants strengthened cell membrane permeability and altered cell structure, but a higher esterase activity and DNA in cells of S. maltophilia were still retained.


Subject(s)
Benzo(a)pyrene/metabolism , Biodegradation, Environmental , Copper/metabolism , Environmental Pollutants/toxicity , Stenotrophomonas maltophilia/metabolism , Benzo(a)pyrene/toxicity , Cell Membrane/drug effects , Copper/toxicity , Flow Cytometry , Stenotrophomonas maltophilia/drug effects
11.
Chemosphere ; 90(6): 1811-20, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23141841

ABSTRACT

Benzo[a]pyrene (BaP) biodegradation by Stenotrophomonas maltophilia was studied under the influence of co-existed Cu(II) ions. About 45% degradation was achieved within 3d when dealing with 1 mg L(-1) BaP under initial natural pH at 30 °C; degradation reached 48% in 2 d at 35 °C. Efficacy of BaP biodegradation reached the highest point at pH 4. In the presence of 10 mg L(-1) Cu(II) ions, the BaP removal ratio was 45% on 7th day, and maintained stable from 7 to 14 d at 30 °C under natural pH. The favorable temperature and pH for BaP removal was 25 °C and 6.0 respectively, when Cu(II) ions coexisted in the solutions. Experiments on cometabolism indicated that S. maltophilia performed best when sucrose was used as an additional carbon source. GC-MS analysis revealed that the five rings of BaP opened, producing compounds with one or two rings which were more bioavailable.


Subject(s)
Benzo(a)pyrene/metabolism , Copper/toxicity , Soil Pollutants/toxicity , Stenotrophomonas maltophilia/metabolism , Benzo(a)pyrene/analysis , Biodegradation, Environmental , Soil Pollutants/analysis , Soil Pollutants/metabolism , Stenotrophomonas maltophilia/drug effects , Temperature
12.
Huan Jing Ke Xue ; 32(3): 779-83, 2011 Mar.
Article in Chinese | MEDLINE | ID: mdl-21634178

ABSTRACT

The influence of different metal ions and different forms of addition on triphenyltin enzymatic degradation was investigated under conditions using enzyme obtained from Klebsiella pneumoniae. The objective of this study is to illuminate the mechanism of enzymatic degradation of triphenyltin (TPhT). The results demonstrated that the strain was able to tolerate K+, Mg2+, CU2+, Ca2+ and Fe3+ at high concentrations. High concentrations of Zn2+ and Fe2+ had some toxic effects on the strain, thus affecting its growth. The endoenzyme activity was enhanced by metal ions such as K+, Mg2+, Zn2+, Cu2+ and Fe2+ at certain concentrations. In the presence of 30 mg/L of Mg2+, the removal percentage of TPhT was up to 77.22%. Fe3+ restrained the enzyme activity at certain concentrations. Adding K+, Mg2+, Zn2+, Cu2+ into medium can promote the production of enzyme, among which Mg2+ demonstrated up to 85.66% of removal percentage of TPhT, suggesting some metal ions at the appropriate concentration range can be used as enzyme activator for the enzymatic degradation of triphenyltin. Metal ions showed no relevant impact on the cell growth and enzyme production. Certain metal ions can only serve as activators of endoenzyme and exhibited no similar effect towards exoenzyme.


Subject(s)
Environmental Pollutants/isolation & purification , Klebsiella pneumoniae/enzymology , Klebsiella pneumoniae/metabolism , Metals/chemistry , Organotin Compounds/isolation & purification , Biodegradation, Environmental , Environmental Pollutants/metabolism , Enzyme Activation , Organotin Compounds/metabolism
13.
Huan Jing Ke Xue ; 32(2): 536-41, 2011 Feb.
Article in Chinese | MEDLINE | ID: mdl-21528580

ABSTRACT

The biodegradation of triphenyltin (TPT) by Rhodopseudomonos spheroids was investigated in this study. The results illuminated that R. spheroids was an effective strain for the biodegradation of TPT. The maximum removal ratio was attained when the growth temperature of R. spheroids was 30 degrees C. After treating for 3 hours, the removal ratios of 3 mg x L(-1) TPT were 13.82% to 47.29% using 0.49 g x L(-1) (based on dry weight) biomass of R. spheroids. The experiments on biodegradation of TPT were carried out in double-distilled water, simulated seawater,culture medium and river water, respectively. The results demonstrated that river water was optimal for the biodegradation since the indigenous microorganisms in water synergistically increased the removal ratios of TPT. Extracellular enzyme produced by R. spheroids was also effective on the degradation of TPT, and 71.64% of TPT was degraded by this way within 24 hours. The experiments also revealed that the biodegradation process of TPT included biosorption by cell wall, TPT entering cells, and initial degradation by intracellular enzyme, then the TPT and intermediate products backing out of cells to be degraded by extracellular enzyme.


Subject(s)
Organotin Compounds/isolation & purification , Rhodobacter sphaeroides/metabolism , Water Pollutants, Chemical/isolation & purification , Biodegradation, Environmental , Enzyme Activation , Organotin Compounds/metabolism , Rhodobacter sphaeroides/enzymology , Water Pollutants, Chemical/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL