Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomed Sci ; 31(1): 30, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38500170

ABSTRACT

BACKGROUND: Acute lung injury (ALI) is a life-threatening respiratory condition characterized by severe inflammation and lung tissue damage, frequently causing rapid respiratory failure and long-term complications. The microRNA let-7a-5p is involved in the progression of lung injury, inflammation, and fibrosis by regulating immune cell activation and cytokine production. This study aims to use an innovative cellular electroporation platform to generate extracellular vesicles (EVs) carring let-7a-5p (EV-let-7a-5p) derived from transfected Wharton's jelly-mesenchymal stem cells (WJ-MSCs) as a potential gene therapy for ALI. METHODS: A cellular nanoporation (CNP) method was used to induce the production and release of EV-let-7a-5p from WJ-MSCs transfected with the relevant plasmid DNA. EV-let-7a-5p in the conditioned medium were isolated using a tangential flow filtration (TFF) system. EV characterization followed the minimal consensus guidelines outlined by the International Society for Extracellular Vesicles. We conducted a thorough set of therapeutic assessments, including the antifibrotic effects using a transforming growth factor beta (TGF-ß)-induced cell model, the modulation effects on macrophage polarization, and the influence of EV-let-7a-5p in a rat model of hyperoxia-induced ALI. RESULTS: The CNP platform significantly increased EV secretion from transfected WJ-MSCs, and the encapsulated let-7a-5p in engineered EVs was markedly higher than that in untreated WJ-MSCs. These EV-let-7a-5p did not influence cell proliferation and effectively mitigated the TGF-ß-induced fibrotic phenotype by downregulating SMAD2/3 phosphorylation in LL29 cells. Furthermore, EV-let-7a-5p regulated M2-like macrophage activation in an inflammatory microenvironment and significantly induced interleukin (IL)-10 secretion, demonstrating their modulatory effect on inflammation. Administering EVs from untreated WJ-MSCs slightly improved lung function and increased let-7a-5p expression in plasma in the hyperoxia-induced ALI rat model. In comparison, EV-let-7a-5p significantly reduced macrophage infiltration and collagen deposition while increasing IL-10 expression, causing a substantial improvement in lung function. CONCLUSION: This study reveals that the use of the CNP platform to stimulate and transfect WJ-MSCs could generate an abundance of let-7a-5p-enriched EVs, which underscores the therapeutic potential in countering inflammatory responses, fibrotic activation, and hyperoxia-induced lung injury. These results provide potential avenues for developing innovative therapeutic approaches for more effective interventions in ALI.


Subject(s)
Acute Lung Injury , Extracellular Vesicles , Hyperoxia , MicroRNAs , Rats , Animals , Cells, Cultured , Hyperoxia/metabolism , Inflammation , MicroRNAs/genetics , MicroRNAs/metabolism , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism , Extracellular Vesicles/physiology , Fibrosis , Acute Lung Injury/therapy , Acute Lung Injury/metabolism
2.
Cancers (Basel) ; 15(19)2023 Sep 30.
Article in English | MEDLINE | ID: mdl-37835505

ABSTRACT

Oral submucous fibrosis (OSF) stands as a progressive oral ailment, designated as a potentially malignant disorder. OSF has gained widespread recognition as a significant precursor to malignant transformation. In the pursuit of dependable, straightforward, and non-invasive diagnostic measures for the early detection of oral malignant progression, research has delved into potential diagnostic biomarkers of OSF. This comprehensive review delves into current investigations that explore the correlation between various biomarkers and OSF. The molecular biomarkers of OSF are categorized based on cytology and sampling methods. Moreover, this review encompasses pertinent studies detailing how these biomarkers are acquired and processed. Within this scope, we scrutinize four potential biomarkers that hold the promise of facilitating the development of diagnostic tools for detecting early-stage OSF.

3.
Nat Commun ; 14(1): 6692, 2023 10 23.
Article in English | MEDLINE | ID: mdl-37872156

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) tumours carry multiple gene mutations and respond poorly to treatments. There is currently an unmet need for drug carriers that can deliver multiple gene cargoes to target high solid tumour burden like PDAC. Here, we report a dual targeted extracellular vesicle (dtEV) carrying high loads of therapeutic RNA that effectively suppresses large PDAC tumours in mice. The EV surface contains a CD64 protein that has a tissue targeting peptide and a humanized monoclonal antibody. Cells sequentially transfected with plasmid DNAs encoding for the RNA and protein of interest by Transwell®-based asymmetric cell electroporation release abundant targeted EVs with high RNA loading. Together with a low dose chemotherapy drug, Gemcitabine, dtEVs suppress large orthotopic PANC-1 and patient derived xenograft tumours and metastasis in mice and extended animal survival. Our work presents a clinically accessible and scalable way to produce abundant EVs for delivering multiple gene cargoes to large solid tumours.


Subject(s)
Carcinoma, Pancreatic Ductal , Extracellular Vesicles , Pancreatic Neoplasms , Humans , Animals , Mice , Deoxycytidine/therapeutic use , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/therapy , Pancreatic Neoplasms/metabolism , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/therapy , Carcinoma, Pancreatic Ductal/metabolism , RNA , Extracellular Vesicles/metabolism , Cell Line, Tumor , Pancreatic Neoplasms
4.
J Nutr Biochem ; 90: 108575, 2021 04.
Article in English | MEDLINE | ID: mdl-33387610

ABSTRACT

Maternal hypercholesterolemia induces early onset of cardiovascular diseases in offspring; however, its underlying mechanism remains poorly understood. We hypothesized that maternal hypercholesterolemia increases offspring susceptibility to atherosclerosis in adulthood through developmental modifications of macrophages. Female apolipoprotein E (ApoE)-deficient mice were fed a Western-type diet (WD) or a control diet (CD) prior to and throughout gestation and lactation. The offspring were all fed a WD after weaning. Sixteen-week-old female offspring of WD-fed dams showed a significant increase in atherosclerotic lesions of the aorta and aortic root compared with those of CD-fed dams. This effect was associated with increased macrophage accumulation within lesions, macrophage inflammation and an increase in circulating Ly6Chigh monocyte and F4/80 macrophage counts. We further evidenced that in utero WD exposure promoted macrophage polarization toward the M1 phenotype by elevating M1 markers (Cd86, Inos/Nos2) without affecting M2 markers (Cd206, Arg1). Proinflammatory cytokine synthesis was also enhanced in response to LPS. Finally, maternal WD intake strongly inhibited the macrophage expression of Pparg and Lxra, which was associated with aberrant DNA methylation of Lxra promoter. Our findings demonstrate that maternal hypercholesterolemia exacerbates atherosclerosis, in part by altering the epigenetic state of the macrophage genome of the offspring, imprinting gene expression, and changing macrophage polarization, which ultimately contributes to plaque macrophage burden.


Subject(s)
Animal Nutritional Physiological Phenomena , Atherosclerosis/metabolism , Hypercholesterolemia/metabolism , Macrophages/metabolism , Maternal Nutritional Physiological Phenomena , Prenatal Exposure Delayed Effects , Animals , Aorta/metabolism , Apolipoproteins E/metabolism , Atherosclerosis/genetics , Atherosclerosis/pathology , Diet, Western , Disease Models, Animal , Female , Gene Expression , Humans , Hypercholesterolemia/genetics , Hypercholesterolemia/pathology , Inflammation/metabolism , Mice , Mice, Inbred C57BL , Monocytes/metabolism , Phenotype , Pregnancy
5.
Nanoscale ; 11(17): 8597-8603, 2019 Apr 25.
Article in English | MEDLINE | ID: mdl-30994150

ABSTRACT

Four aggregation-induced emission (AIE)- and electro-active cyanostilbene-based triphenylamine-containing derivatives with different substituents were synthesized to investigate their effects on the photoluminescence properties and electrochromic (EC) and electrofluorochromic (EFC) behavior of gel-type electrochromic devices (ECDs). The optical and photoluminescence properties of the obtained materials were influenced by the substituents, and revealed AIE-active characteristics, exhibiting stronger fluorescence intensity in the aggregated state than in solution. Consequently, the EFC devices could be fabricated by combining these AIE- and electro-active materials with cathodic EC heptyl viologen HV into the gel-type electrolyte system to enhance the emission intensity, on/off contrast ratio, and response capability.

6.
APMIS ; 125(11): 1027-1032, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28885723

ABSTRACT

Biofilm formation has been well known as a determinant of bacterial virulence. Group G Streptococcus dysgalactiae subspecies equisimilis (SDSE), a relevant pathogen with increasing medical importance, was evaluated for the biofilm-forming potential. Microtiter plate assay was used to assess the most feasible medium for group G SDSE to form a biofilm. Among 246 SDSE isolates examined, 46.7%, 43.5%, 33.3%, and 26.4% of isolates showed moderate or strong biofilm-forming abilities using tryptic soy broth (TSB), brain heart infusion broth (BHI), Todd-Hewitt broth (THB), and C medium with 30 mM glucose (CMG), respectively. The addition of glucose significantly increased the biofilm-forming ability of group G SDSE. FCT (fibronectin-collagen-T-antigen) typing of SDSE was first undertaken and 11 FCT types were found. Positive associations of stG10.0 or negative associations of stG245.0, stG840.0, and stG6.1 with biofilm-forming ability of SDSE were, respectively, found. This was the first investigation demonstrating biofilm-forming potential in clinical group G SDSE isolates; also, some significant associations of biofilm-forming ability with certain emm types were presented.


Subject(s)
Antigens, Bacterial/genetics , Bacterial Outer Membrane Proteins/genetics , Biofilms/drug effects , Carrier Proteins/genetics , Glucose/pharmacology , Streptococcus/drug effects , Streptococcus/genetics , Bacterial Typing Techniques , Biofilms/growth & development , Culture Media/chemistry , Culture Media/pharmacology , Gene Expression , Glucose/metabolism , Humans , Polymorphism, Genetic , Streptococcal Infections/epidemiology , Streptococcal Infections/microbiology , Streptococcus/classification , Streptococcus/isolation & purification , Taiwan/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...