Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Invest ; 133(11)2023 06 01.
Article in English | MEDLINE | ID: mdl-36951953

ABSTRACT

Endothelial cells (ECs) normally form an anticoagulant surface under physiological conditions, but switch to support coagulation following pathogenic stimuli. This switch promotes thrombotic cardiovascular disease. To generate thrombin at physiologic rates, coagulation proteins assemble on a membrane containing anionic phospholipid, most notably phosphatidylserine (PS). PS can be rapidly externalized to the outer cell membrane leaflet by phospholipid "scramblases," such as TMEM16F. TMEM16F-dependent PS externalization is well characterized in platelets. In contrast, how ECs externalize phospholipids to support coagulation is not understood. We employed a focused genetic screen to evaluate the contribution of transmembrane phospholipid transport on EC procoagulant activity. We identified 2 TMEM16 family members, TMEM16F and its closest paralog, TMEM16E, which were both required to support coagulation on ECs via PS externalization. Applying an intravital laser-injury model of thrombosis, we observed, unexpectedly, that PS externalization was concentrated at the vessel wall, not on platelets. TMEM16E-null mice demonstrated reduced vessel-wall-dependent fibrin formation. The TMEM16 inhibitor benzbromarone prevented PS externalization and EC procoagulant activity and protected mice from thrombosis without increasing bleeding following tail transection. These findings indicate the activated endothelial surface is a source of procoagulant phospholipid contributing to thrombus formation. TMEM16 phospholipid scramblases may be a therapeutic target for thrombotic cardiovascular disease.


Subject(s)
Cardiovascular Diseases , Thrombosis , Animals , Mice , Blood Platelets/metabolism , Cardiovascular Diseases/metabolism , Endothelial Cells/metabolism , Mice, Knockout , Phosphatidylserines , Phospholipid Transfer Proteins/genetics , Phospholipid Transfer Proteins/metabolism , Phospholipids/metabolism , Thrombosis/pathology
2.
JCI Insight ; 6(20)2021 10 22.
Article in English | MEDLINE | ID: mdl-34506304

ABSTRACT

Endothelial dysfunction accompanies the microvascular thrombosis commonly observed in severe COVID-19. Constitutively, the endothelial surface is anticoagulant, a property maintained at least in part via signaling through the Tie2 receptor. During inflammation, the Tie2 antagonist angiopoietin-2 (Angpt-2) is released from endothelial cells and inhibits Tie2, promoting a prothrombotic phenotypic shift. We sought to assess whether severe COVID-19 is associated with procoagulant endothelial dysfunction and alterations in the Tie2/angiopoietin axis. Primary HUVECs treated with plasma from patients with severe COVID-19 upregulated the expression of thromboinflammatory genes, inhibited the expression of antithrombotic genes, and promoted coagulation on the endothelial surface. Pharmacologic activation of Tie2 with the small molecule AKB-9778 reversed the prothrombotic state induced by COVID-19 plasma in primary endothelial cells. Lung autopsies from patients with COVID-19 demonstrated a prothrombotic endothelial signature. Assessment of circulating endothelial markers in a cohort of 98 patients with mild, moderate, or severe COVID-19 revealed endothelial dysfunction indicative of a prothrombotic state. Angpt-2 concentrations rose with increasing disease severity, and the highest levels were associated with worse survival. These data highlight the disruption of Tie2/angiopoietin signaling and procoagulant changes in endothelial cells in severe COVID-19. Our findings provide rationale for current trials of Tie2-activating therapy with AKB-9778 in COVID-19.


Subject(s)
COVID-19 Drug Treatment , Endothelial Cells/drug effects , Protective Agents/pharmacology , Receptor, TIE-2/metabolism , Adult , Aged , Aged, 80 and over , Angiopoietin-2/metabolism , Aniline Compounds , Female , Gene Expression , Humans , Lung , Male , Middle Aged , Receptor, TIE-2/genetics , SARS-CoV-2 , Signal Transduction , Sulfonic Acids , Vascular Diseases/metabolism , Young Adult
3.
medRxiv ; 2021 May 17.
Article in English | MEDLINE | ID: mdl-34031665

ABSTRACT

Profound endothelial dysfunction accompanies the microvascular thrombosis commonly observed in severe COVID-19. In the quiescent state, the endothelial surface is anticoagulant, a property maintained at least in part via constitutive signaling through the Tie2 receptor. During inflammation, the Tie2 antagonist angiopoietin-2 (Angpt-2) is released from activated endothelial cells and inhibits Tie2, promoting a prothrombotic phenotypic shift. We sought to assess whether severe COVID-19 is associated with procoagulant dysfunction of the endothelium and alterations in the Tie2-angiopoietin axis. Primary human endothelial cells treated with plasma from patients with severe COVID-19 upregulated the expression of thromboinflammatory genes, inhibited expression of antithrombotic genes, and promoted coagulation on the endothelial surface. Pharmacologic activation of Tie2 with the small molecule AKB-9778 reversed the prothrombotic state induced by COVID-19 plasma in primary endothelial cells. On lung autopsy specimens from COVID-19 patients, we found a prothrombotic endothelial signature as evidenced by increased von Willebrand Factor and loss of anticoagulant proteins. Assessment of circulating endothelial markers in a cohort of 98 patients with mild, moderate, or severe COVID-19 revealed profound endothelial dysfunction indicative of a prothrombotic state. Angpt-2 concentrations rose with increasing disease severity and highest levels were associated with worse survival. These data highlight the disruption of Tie2-angiopoietin signaling and procoagulant changes in endothelial cells in severe COVID-19. Moreover, our findings provide novel rationale for current trials of Tie2 activating therapy with AKB-9778 in severe COVID-19 disease.

SELECTION OF CITATIONS
SEARCH DETAIL