Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters











Publication year range
1.
Environ Sci Technol ; 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39172699

ABSTRACT

Nanoplastics represent a global environmental concern due to their ubiquitous presence and potential adverse impacts on public and environmental health. There is a growing need to advance the mechanistic understanding of their reactivity as they interact with biological and environmental systems. Herein, for the first time, we report that polystyrene nanoplastics (PSNPs) have intrinsic peroxidase-like activity and are able to mediate oxidative stress. The peroxidase-like activity is dependent on temperature and pH, with a maximum at pH 4.5 and 40 °C. The catalytic activity exhibits saturation kinetics, as described by the Michaelis-Menten model. The peroxidase-like activity of PSNPs is attributed to their ability to mediate electron transfer from peroxidase substrates to H2O2. Ozone-induced PSNP aging can introduce oxygen-containing groups and disrupt aromatic structures on the nanoplastic surface. While ozonation initially enhances peroxidase-like activity by increasing oxygen-containing groups without degrading many aromatic structures, extended ozonation destroys aromatic structures, significantly reducing this activity. The peroxidase-like activity of PSNPs can mediate oxidative stress, which is generally positively correlated with their aromatic structures, as suggested by the ascorbic acid assay. These results help explain the reported oxidative stress exerted by nanoplastics and provide novel insights into their environmental and public health implications.

2.
J Affect Disord ; 362: 808-815, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39029680

ABSTRACT

BACKGROUND: The impacts of maternal depression during mid-to-late pregnancy on fetal growth have been extensively investigated. However, the association between maternal depression during early pregnancy and fetal intrauterine growth are less clear. METHODS: A prospective study comprised 23,465 eligible pregnant women and their offspring was conducted at a hospital-based center in Shanghai. Prenatal depression was assessed used using Patient Health Questionnaire (PHQ-9) before 14 gestational weeks. Differences in fetal growth trajectory of different maternal depressive statuses during three periods (16-23, 24-31, and 32-41 gestational weeks) were compared using a multilevel model with fractional polynomials. RESULTS: Women with depressive symptoms during early pregnancy had higher longitudinal fetal trajectories, with an estimated increase in fetal weight (ß = 0.33; 95 % CI, 0.06-0.61), compared to those without depressive symptoms. Increases in fetal abdominal circumference among women with depressive symptoms were observed before 23 gestational weeks. Offspring born to mothers with early pregnancy depression had a significantly higher birth weight of 14.13 g (95 % CI, 1.33-27.81 g) and an increased risk of severe large size for gestational age (adjusted odds ratio [aOR], 1.64; 95 % CI, 1.32-2.04) and macrosomia (aOR, 1.21; 95 % CI, 1.02-1.43). LIMITATIONS: Self-rated scale was used to assess depressive symptoms rather than clinical diagnosis. And Long-term effects of early pregnancy depression on offspring were not explored. CONCLUSIONS: The study revealed an association between maternal depression during early pregnancy and increased fetal biometrics, higher birth weight, and an elevated risk of severe large size for gestational age and macrosomia.


Subject(s)
Depression , Fetal Development , Pregnancy Complications , Humans , Female , Pregnancy , Adult , Fetal Development/physiology , Prospective Studies , Pregnancy Complications/psychology , Depression/psychology , Depression/epidemiology , China/epidemiology , Gestational Age , Birth Weight , Longitudinal Studies , Fetal Macrosomia/epidemiology , Young Adult , Infant, Newborn
3.
Gene Ther ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961279

ABSTRACT

Neovascular age-related macular degeneration (nAMD) causes severe visual impairment. Pigment epithelium-derived factor (PEDF), soluble CD59 (sCD59), and soluble fms-like tyrosine kinase-1 (sFLT-1) are potential therapeutic agents for nAMD, which target angiogenesis and the complement system. Using the AAV2/8 vector, two bi-target gene therapy agents, AAV2/8-PEDF-P2A-sCD59 and AAV2/8-sFLT-1-P2A-sCD59, were generated, and their therapeutic efficacy was investigated in laser-induced choroidal neovascularization (CNV) and Vldlr-/- mouse models. After a single injection, AAV2/8-mediated gene expression was maintained at high levels in the retina for two months. Both AAV2/8-PEDF-P2A-sCD59 and AAV2/8-sFLT-1-P2A-sCD59 significantly reduced CNV development for an extended period without side effects and provided efficacy similar to two injections of current anti-vascular endothelial growth factor monotherapy. Mechanistically, these agents suppressed the extracellular signal-regulated kinase and nuclear factor-κB pathways, resulting in anti-angiogenic activity. This study demonstrated the safety and long-lasting effects of AAV2/8-PEDF-P2A-sCD59 and AAV2/8-sFLT-1-P2A-sCD59 in CNV treatment, providing a promising therapeutic strategy for nAMD.

4.
Adv Sci (Weinh) ; 11(30): e2400242, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38874525

ABSTRACT

Maxillofacial bone defects exhibit intricate anatomy and irregular morphology, presenting challenges for effective treatment. This study aimed to address these challenges by developing an injectable bioactive composite microsphere, termed D-P-Ak (polydopamine-PLGA-akermanite), designed to fit within the defect site while minimizing injury. The D-P-Ak microspheres biodegraded gradually, releasing calcium, magnesium, and silicon ions, which, notably, not only directly stimulated the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) but also activated sensory nerve cells to secrete calcitonin gene-related peptide (CGRP), a key factor in bone repair. Moreover, the released CGRP enhanced the osteogenic differentiation of BMSCs through epigenetic methylation modification. Specifically, inhibition of EZH2 and enhancement of KDM6A reduced the trimethylation level of histone 3 at lysine 27 (H3K27), thereby activating the transcription of osteogenic genes such as Runx2 and Osx. The efficacy of the bioactive microspheres in bone repair is validated in a rat mandibular defect model, demonstrating that peripheral nerve response facilitates bone regeneration through epigenetic modification. These findings illuminated a novel strategy for constructing neuroactive osteo-inductive biomaterials with potential for further clinical applications.


Subject(s)
Bone Regeneration , Mesenchymal Stem Cells , Microspheres , Osteogenesis , Animals , Rats , Mesenchymal Stem Cells/metabolism , Bone Regeneration/genetics , Bone Regeneration/drug effects , Bone Regeneration/physiology , Osteogenesis/physiology , Osteogenesis/genetics , Cell Differentiation , Demethylation , Rats, Sprague-Dawley , Disease Models, Animal , Ceramics , Histones/metabolism , Histones/genetics , Calcitonin Gene-Related Peptide/metabolism , Calcitonin Gene-Related Peptide/genetics , Male , Biocompatible Materials/metabolism
5.
Biochem Pharmacol ; 226: 116297, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38801925

ABSTRACT

Apelin-13, a type of active peptide, can alleviate lipopolysaccharide (LPS)-induced acute lung injury (ALI). However, the specific mechanism is unclear. Cell cycle checkpoint kinase 1 (Chk1) plays an important role in DNA damage. Here, we investigated the regulatory effect of Apelin on Chk1 in ALI. Chk1-knockout and -overexpression mice were used to explore the role of Chk1 in LPS-induced ALI mice treated with or without Apelin-13. In addition, A549 cells were also treated with LPS to establish a cell model. Chk1 knockdown inhibited the destruction of alveolar structure, the damage of lung epithelial barrier function, and DNA damage in the ALI mouse model. Conversely, Chk1 overexpression had the opposite effect. Furthermore, Apelin-13 reduced Chk1 expression and DNA damage to improve the impaired lung epithelial barrier function in the ALI model. However, the high expression of Chk1 attenuated the protective effect of Apelin-13 on ALI. Notably, Apelin-13 promoted Chk1 degradation through autophagy to regulate DNA damage in LPS-treated A549 cells. In summary, Apelin-13 regulates the expression of Chk1 by promoting autophagy, thereby inhibiting epithelial DNA damage and repairing epithelial barrier function.


Subject(s)
Acute Lung Injury , Checkpoint Kinase 1 , DNA Damage , Lipopolysaccharides , Mice, Inbred C57BL , Mice, Knockout , Animals , Acute Lung Injury/chemically induced , Acute Lung Injury/metabolism , Lipopolysaccharides/toxicity , Mice , DNA Damage/drug effects , DNA Damage/physiology , Checkpoint Kinase 1/metabolism , Checkpoint Kinase 1/genetics , Humans , A549 Cells , Male , Disease Models, Animal , Intercellular Signaling Peptides and Proteins/metabolism , Intercellular Signaling Peptides and Proteins/genetics , Respiratory Mucosa/metabolism , Respiratory Mucosa/drug effects
6.
Hum Mol Genet ; 33(15): 1356-1366, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-38723288

ABSTRACT

microRNAs (miRNAs) are short non-coding RNAs that have been increasingly recognized for their significant roles in the progression of cancer. Distinct miRNAs exhibit diverse functions attributed to variations in their sequences. As a result of possessing highly homologous seed sequences, these miRNAs target overlapping or similar gene sets, thus performing analogous roles. However, different from this sight, our study discovered that miR-135a-5p and miR-135b-5p, despite differing by only one nucleotide, exhibit distinct functional roles. Using non-small cell lung cancer (NSCLC) as a paradigm, our findings unveiled the downregulation of miR-135a-5p and upregulation of miR-135b-5p within NSCLC through TCGA database. Consequently, we further investigated their functional differences in A549 cells. Overexpression of miR-135b-5p enhanced the proliferation and migration capabilities of A549 cells, whereas miR-135a-5p transfection exhibited the opposite effect. We demonstrated that the activation of specific enhancers serves as a crucial mechanism underlying the disparate functions exerted by miR-135a-5p and miR-135b-5p in the context of NSCLC, consequently instigating a shift from inhibition to activation in NSCLC progression. Finally, we validated through animal experiments that miR-135b-5p promoted tumor progression, while miR-135a-5p exerted inhibitory effects on NSCLC development. This study offers a novel perspective for researchers to elucidate functional disparities exhibited by highly homologous miRNAs (miR-135a-5p and miR-135b-5p) in the context of NSCLC, along with the transition from inhibitory to progressive states in NSCLC. This study provides a solid foundation for future investigations into the functional roles of highly homologous miRNAs in pathological situation.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Cell Proliferation , Gene Expression Regulation, Neoplastic , Lung Neoplasms , MicroRNAs , MicroRNAs/genetics , Humans , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Animals , Cell Proliferation/genetics , Mice , Disease Progression , Cell Movement/genetics , A549 Cells , Enhancer Elements, Genetic , Cell Line, Tumor
7.
Commun Biol ; 7(1): 544, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714800

ABSTRACT

Numerous myofibroblasts are arisen from endothelial cells (ECs) through endothelial to mesenchymal transition (EndMT) triggered by TGF-ß. However, the mechanism of ECs transforms to a different subtype, or whether there exists an intermediate state of ECs remains unclear. In present study, we demonstrate Midkine (MDK) mainly expressed by CD31 + ACTA2+ECs going through partial EndMT contribute greatly to myofibroblasts by spatial and single-cell transcriptomics. MDK is induced in TGF-ß treated ECs, which upregulates C/EBPß and increases EndMT genes, and these effects could be reversed by siMDK. Mechanistically, MDK promotes the binding ability of C/EBPß with ACTA2 promoter by stabilizing the C/EBPß protein. In vivo, knockout of Mdk or conditional knockout of Mdk in ECs reduces EndMT markers and significantly reverses fibrogenesis. In conclusion, our study provides a mechanistic link between the induction of EndMT by TGF-ß and MDK, which suggests that blocking MDK provides potential therapeutic strategies for renal fibrosis.


Subject(s)
CCAAT-Enhancer-Binding Protein-beta , Endothelial-Mesenchymal Transition , Fibrosis , Midkine , Animals , Humans , Male , Mice , CCAAT-Enhancer-Binding Protein-beta/metabolism , CCAAT-Enhancer-Binding Protein-beta/genetics , Endothelial Cells/metabolism , Endothelial Cells/pathology , Kidney/metabolism , Kidney/pathology , Kidney Diseases/metabolism , Kidney Diseases/pathology , Kidney Diseases/genetics , Mice, Inbred C57BL , Mice, Knockout , Midkine/metabolism , Midkine/genetics , Myofibroblasts/metabolism , Myofibroblasts/pathology , Transforming Growth Factor beta/metabolism
8.
Front Immunol ; 15: 1355314, 2024.
Article in English | MEDLINE | ID: mdl-38455059

ABSTRACT

Background: The aim of this study was to identify inflammatory biomarkers in traumatic proliferative vitreoretinopathy (TPVR) patients and further validate the expression curve of particular biomarkers in the rabbit TPVR model. Methods: The Olink Inflammation Panel was used to compare the differentially expressed proteins (DEPs) in the vitreous of TPVR patients 7-14 days after open globe injury (OGI) (N = 19) and macular hole patients (N = 22), followed by correlation analysis between DEPs and clinical signs, protein-protein interaction (PPI) analysis, area under the receiver operating characteristic curve (AUC) analysis, and function enrichment analysis. A TPVR rabbit model was established and expression levels of candidate interleukin family members (IL-6, IL-7, and IL-33) were measured by enzyme-linked immunosorbent assay (ELISA) at 0, 1, 3, 7, 10, 14, and 28 days after OGI. Results: Forty-eight DEPs were detected between the two groups. Correlation analysis showed that CXCL5, EN-RAGE, IL-7, ADA, CD5, CCL25, CASP8, TWEAK, and IL-33 were significantly correlated with clinical signs including ocular wound characteristics, PVR scoring, PVR recurrence, and final visual acuity (R = 0.467-0.699, p < 0.05), and all with optimal AUC values (0.7344-1). Correlations between DEP analysis and PPI analysis further verified that IL-6, IL-7, IL-8, IL-33, HGF, and CXCL5 were highly interactive (combined score: 0.669-0.983). These DEPs were enriched in novel pathways such as cancer signaling pathway (N = 14, p < 0.000). Vitreous levels of IL-6, IL-7, and IL-33 in the rabbit TPVR model displayed consistency with the trend in Olink data, all exhibiting marked differential expression 1 day following the OGI. Conclusion: IL-7, IL-33, EN-RAGE, TWEAK, CXCL5, and CD5 may be potential biomarkers for TPVR pathogenesis and prognosis, and early post-injury may be an ideal time for TPVR intervention targeting interleukin family biomarkers.


Subject(s)
Vitreoretinopathy, Proliferative , Humans , Rabbits , Animals , Vitreoretinopathy, Proliferative/diagnosis , Vitreoretinopathy, Proliferative/etiology , Vitreoretinopathy, Proliferative/metabolism , Vitreous Body/metabolism , Interleukin-33/metabolism , Interleukin-6/metabolism , Interleukin-7/metabolism , Proteomics , Prognosis , Biomarkers/metabolism
9.
BMC Cancer ; 24(1): 270, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38408977

ABSTRACT

BACKGROUND: Previous studies have observed a link between immunophenotypes and lung cancer, both of which are closely associated with genetic factors. However, the causal relationship between them remains unclear. METHODS: Bidirectional Mendelian randomization (MR) was performed on publicly available genome-wide association study (GWAS) summary statistics to analyze the causal relationships between 731 immunophenotypes and lung cancer. Sensitivity analyses were conducted to verify the robustness, heterogeneity, and potential horizontal pleiotropy of our findings. RESULTS: Following Bonferroni adjustment, CD14- CD16+ monocyte (OR = 0.930, 95%CI 0.900-0.960, P = 8.648 × 10- 6, PBonferroni = 0.006) and CD27 on CD24+ CD27+ B cells (OR = 1.036, 95%CI 1.020-1.053, P = 1.595 × 10 - 5, PBonferroni = 0.012) were identified as having a causal role in lung cancer via the inverse variance weighted (IVW) method. At a more relaxed threshold, CD27 on IgD+ CD24+ B cell (OR = 1.035, 95%CI 1.017-1.053, P = 8.666 × 10- 5, PBonferroni = 0.063) and CD27 on switched memory B cell (OR = 1.037, 95%CI 1.018-1.056, P = 1.154 × 10- 4, PBonferroni = 0.084) were further identified. No statistically significant effects of lung cancer on immunophenotypes were found. CONCLUSIONS: The elevated level of CD14- CD16+ monocytes was a protective factor against lung cancer. Conversely, CD27 on CD24+ CD27+ B cell was a risk factor. CD27 on class-switched memory B cells and IgD+ CD24+ B cells were potential risk factors for lung cancer. This research enhanced our comprehension of the interplay between immune responses and lung cancer risk. Additionally, these findings offer valuable perspectives for the development of immunologically oriented therapeutic strategies.


Subject(s)
Lung Neoplasms , Humans , Lung Neoplasms/epidemiology , Lung Neoplasms/genetics , Genome-Wide Association Study , Mendelian Randomization Analysis , Causality , Risk Factors
10.
J Sep Sci ; 47(3): e2300670, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38356230

ABSTRACT

Zanthoxylum, as a medicinal and edible herbal medicine, has a long history and complex chemical composition. There are many varieties of Zanthoxylum, and there are differences in composition between varieties. In this study, a rapid classification and identification method for the main components of Zanthoxylum was established using ultra-high-performance-liquid chromatography quadrupole-orbitrap-mass spectrometry. The components of Shandong Zanthoxylum bungeanum, Wudu Zanthoxylum bungeanum, and Zanthoxylum schinifolium were identified by studying the characteristic fragmentations and neutral losses of characteristic components. A total of 48 common components and 24 different components were identified and the fragmentation patterns of the main components, such as flavonoids, alkaloids, and organic acids were summarized. These findings provided a reference for the study of pharmacodynamic substance basis and quality control of different varieties of Zanthoxylum.


Subject(s)
Alkaloids , Drugs, Chinese Herbal , Plants, Medicinal , Zanthoxylum , Zanthoxylum/chemistry , Plants, Medicinal/chemistry , Drugs, Chinese Herbal/chemistry , Mass Spectrometry , Chromatography, Liquid , Chromatography, High Pressure Liquid
11.
Biomark Res ; 12(1): 9, 2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38245774

ABSTRACT

Uncontrolled productive infection of BK polyomaviruses (BKV) in immunocompromised patients was reported to result in serious diseases, especially renourinary malignancies. However, the mechanism of BKV as a role of human carcinogen is still unknown. In this study, we showed that there is a significant association between BKV infection and metastasis of urothelial carcinoma (UCA). BKV-infected tumor tissues exhibit invasive histologic phenomena with vascular invasion and myometrial invasion. Then we identified that BKV promotes UCA invasion in a mode of dual regulation of tumor cells (TCs) invasion and endothelial cells (ECs) adhesion by encoding miRNAs. In cancer cells, BKV-B1-miR-5p promotes cell motility and invasiveness by directly targeting CLDN1. Moreover, exosomal-BKV-B1-miR-3p derived from BK-infected BC cells would be transferred to ECs and increase its adhesion to tumor cells by switching on the CLDN1 enhancer, which subsequently destroyed endothelial monolayers and increased permeability. In a human urothelial cancer metastasis mouse model, BK-inoculated cells exhibited higher incidence of vascular leakage and liver colonization. However, the vascular leakage and liver metastasis could be reduced when knocking down miRNAs in BK-inoculated cells. Our research delineates the bifunctional impact of BKV-encoded microRNAs on the expression of CLDN1 within both TCs and ECs, which orchestrates the establishment of a pre-metastatic niche in UCA.

12.
Int Immunopharmacol ; 127: 111426, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38147776

ABSTRACT

Pulmonary alveolar epithelial cell injury is considered the main pathological and physiological change in acute lung injury. Ferroptosis in alveolar epithelial cells is one of crucial factors contributing to acute lung injury (ALI). Therefore, reducing ferroptosis and repair epithelial barrier is very necessary. More and more evidence suggested that FGF10 plays an important role in lung development and repair after injury. However, the relationship between FGF10 and ferroptosis remains unclear. This study aims to explore the regulatory role of FGF10 on ferroptosis in ALI. Differential gene expression analysis indicated that genes associated with ferroptosis showed that FGF10 can significantly alleviate LPS induced lung injury and epithelial barrier damage by decreasing levels of malonaldehyde(MDA), and lipid ROS. SIRT1 activator (Resveratrol) and inhibitor (EX527) are used in vivo showed that FGF10 protects ferroptosis of pulmonary epithelial cells through SIRT1 signal. Furthermore, knockdown of FGFR2 gene reduced the protective effect of FGF10 on acute lung injury in mice and SIRT1 activation. After the application of NRF2 inhibitor ML385 in vitro, the results showed that SIRT1 regulated the expression of ferroptosis related proteins NRF2, GPX4 and FTH1 are related to activation of NRF2. These data indicate that SIRT-ferroptosis was one of the critical mechanisms contributing to LPS-induced ALI. FGF10 is promising as a therapeutic candidate against ALI through inhibiting ferroptosis.


Subject(s)
Acute Lung Injury , Ferroptosis , Animals , Mice , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Inflammation , Lipopolysaccharides , NF-E2-Related Factor 2/genetics , Sirtuin 1/genetics
13.
Bone Res ; 11(1): 65, 2023 12 20.
Article in English | MEDLINE | ID: mdl-38123549

ABSTRACT

The skeleton is a highly innervated organ in which nerve fibers interact with various skeletal cells. Peripheral nerve endings release neurogenic factors and sense skeletal signals, which mediate bone metabolism and skeletal pain. In recent years, bone tissue engineering has increasingly focused on the effects of the nervous system on bone regeneration. Simultaneous regeneration of bone and nerves through the use of materials or by the enhancement of endogenous neurogenic repair signals has been proven to promote functional bone regeneration. Additionally, emerging information on the mechanisms of skeletal interoception and the central nervous system regulation of bone homeostasis provide an opportunity for advancing biomaterials. However, comprehensive reviews of this topic are lacking. Therefore, this review provides an overview of the relationship between nerves and bone regeneration, focusing on tissue engineering applications. We discuss novel regulatory mechanisms and explore innovative approaches based on nerve-bone interactions for bone regeneration. Finally, the challenges and future prospects of this field are briefly discussed.


Subject(s)
Bone Diseases , Tissue Engineering , Humans , Biocompatible Materials/metabolism , Bone and Bones/metabolism , Neurogenesis
14.
J Mass Spectrom ; 58(11): e4978, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37946617

ABSTRACT

Leonurus japonicus Houtt (LJH) is a bulk medicinal material commonly used in clinical practice, but its complex constituents have not been completely understood, posing challenges to pharmacology, pharmacokinetic research, and scientific and rational drug use. As a result, it is critical to develop an efficient and accurate method for classifying and identifying the chemical composition of LJH. In this study, ultra-performance liquid chromatography-quadrupole electrostatic field-orbital trap high resolution mass spectrometry (UPLC-Q-Orbitrap-MS) was successfully established, along with two data post-processing techniques, characteristic fragmentations (CFs) and neutral losses (NLs), to quickly classify and identify the chemical constituents in LJH. As a result, 44 constituents of LJH were identified, including four alkaloids, 20 flavonoids, two phenylpropanoids, 17 organic acids, and one amino acid. The method in this paper enables classification and identification of chemical compositions rapidly, providing a scientific foundation for further research on the effective and toxic substances of LJH.


Subject(s)
Drugs, Chinese Herbal , Leonurus , Drugs, Chinese Herbal/chemistry , Leonurus/chemistry , Chromatography, High Pressure Liquid/methods , Tandem Mass Spectrometry/methods , Plant Extracts/chemistry
15.
Gut Microbes ; 15(2): 2282790, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37992400

ABSTRACT

Numerous studies have described the notable impact of gut microbiota on the brain in Alzheimer's disease (AD) via the gut - brain axis. However, the molecular mechanisms underlying the involvement of gut microbiota in the development of AD are limited. This study aimed to explore the potential mechanisms of gut microbiota in AD by integrating multi-omics data. In this study, APP/PS1 and WT mice at nine months of age were used as study mouse model. Cognitive function was assessed using the Morris water maze test. The levels of Aß plaque and neuroinflammation in the brain were detected using immunofluorescence and PET/CT. In addition, we not only used 16S rRNA gene sequencing and metabolomics to explore the variation characteristics of gut microbiota and serum metabolism abundance, but also combined spatial metabolomics and transcriptomics to explore the change in the brain and identify their potential correlation. APP/PS1 mice showed significant cognitive impairment and amyloid-ß deposits in the brain. The abundance of gut microbiota was significantly changed in APP/PS1 mice, including decreased Desulfoviobrio, Enterococcus, Turicibacter, and Ruminococcus and increased Pseudomonas. The integration of serum untargeted metabolomics and brain spatial metabolomics showed that glycerophospholipid metabolism was a common alteration pathway in APP/PS1 mice. Significant proliferation and activation of astrocyte and microglia were observed in APP/PS1 mice, accompanied by alterations in immune pathways. Integration analysis and fecal microbiota transplantation (FMT) intervention revealed potential association of gut microbiota, host glycerophospholipid metabolism, and neuroinflammation levels in APP/PS1 mice.


Subject(s)
Alzheimer Disease , Gastrointestinal Microbiome , Mice , Animals , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Mice, Transgenic , Neuroinflammatory Diseases , RNA, Ribosomal, 16S/genetics , Multiomics , Positron Emission Tomography Computed Tomography , Alzheimer Disease/complications , Glycerophospholipids , Disease Models, Animal
16.
Nat Prod Res ; : 1-8, 2023 Nov 11.
Article in English | MEDLINE | ID: mdl-37950736

ABSTRACT

As a compound preparation of traditional Chinese medicine, Jianwei Xiaoshi Tablets (JXT) is made from five Chinese herbs: Taizishen (Pseudostellariae Radix), Chenpi (Citri Reticulatae Pericarpium), Shanyao (Dioscoreae Rhizoma), Maiya (Hordei Fructus Germinatus) and Shanzha (Crataegi Fructus). It is mainly used to treat dyspepsia. However, the chemical composition of JXT is complex and unclear. In this study, ultra performance liquid chromatography-quadrupole-orbitrap-mass spectrometry and data post-processing technologies were used to analyse the samples of JXT. Firstly, the mass spectrometric information of the main components of five traditional Chinese herbs in JXT was summarised and a compound database was established. Then, the mass spectrometric data detected by the prepared samples was compared with the database. Finally, 93 chemical components were successfully identified, including 6 amino acids, 34 flavonoids, 18 alkaloids, 15 organic acids, 9 cyclic peptides and 11 other components, and the rapid classification and identification of chemical components of JXT were realised.

18.
J Sep Sci ; 46(20): e2300466, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37599277

ABSTRACT

Schisandra chinensis is a traditional Chinese medicine, which has played an important role in the field of medicine and food. In this study, ultra-high-performance liquid chromatography quadrupole-orbitrap-mass spectrometry was used to rapidly classify and identify the chemical compositions. Note that 32, 28, and 30 kinds of compounds were successfully identified from northern Schisandra chinensis, vinegar-processed Schisandra chinensis, and wine-processed Schisandra chinensis, respectively. The cleavage patterns of various components including lignans, organic acids, flavonoids, and terpenoids were summarized, and the effects of different processing methods on Schisandra chinensis were analyzed through chemical composition. This method realized the rapid classification and identification of raw Schisandra chinensis and two different processed products, and provided references for improving the traditional processing methods, strengthening quality control, and ensuring safe clinical application.


Subject(s)
Drugs, Chinese Herbal , Lignans , Schisandra , Chromatography, High Pressure Liquid/methods , Schisandra/chemistry , Lignans/analysis , Drugs, Chinese Herbal/analysis , Tandem Mass Spectrometry/methods
19.
Mol Neurobiol ; 60(10): 5548-5556, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37322288

ABSTRACT

Alzheimer's disease (AD) is the most common type of neurodegenerative disease and its pathogenesis is still unclear. Genetic factors are thought to account for a large proportion of the overall AD phenotypes. ATP-binding cassette transporter A7 (ABCA7) is one of the most important risk gene for AD. Multiple forms of ABCA7 variants significantly increase the risk of AD, such as single-nucleotide polymorphisms, premature termination codon variants, missense variants, variable number tandem repeat, mutations, and alternative splicing. AD patients with ABCA7 variants usually exhibit typical clinical and pathological features of traditional AD with a wide age of onset range. ABCA7 variants can alter ABCA7 protein expression levels and protein structure to affect protein functions such as abnormal lipid metabolism, amyloid precursor protein (APP) processing, and immune cell function. Specifically, ABCA7 deficiency can cause neuronal apoptosis by inducing endoplasmic reticulum stress through the PERK/eIF2α pathway. Second, ABCA7 deficiency can increase Aß production by upregulating the SREBP2/BACE1 pathway and promoting APP endocytosis. In addition, the ability of microglia to phagocytose and degrade Aß is destroyed by ABCA7 deficiency, leading to reduced clearance of Aß. Finally, disturbance of lipid metabolism may also be an important method by which ABCA7 variants influence the incidence rate of AD. In the future, more attention should be given to different ABCA7 variants and ABCA7 targeted therapies for AD.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Humans , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Amyloid Precursor Protein Secretases/metabolism , Aspartic Acid Endopeptidases/metabolism , Amyloid beta-Protein Precursor/metabolism , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Amyloid beta-Peptides/metabolism
20.
Mater Today Bio ; 20: 100616, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37025556

ABSTRACT

Diabetic wounds always have puzzled patients and caused serious social problems. Due to the lack of local blood vessels, severe hypoxia is generated in the defect area, which is an essential reason for the difficulty of wound healing. We have constructed a photocatalytic oxygen evolution and antibacterial biomimetic repair membrane to solve the problems of wound repair. A scanning electron microscope and transmission electron microscope characterized the biomimetic repair membrane. The oxygen evolution of the biomimetic membrane was tested by an oxygen meter. The excellent antibacterial performance of the biomimetic repair membrane was also verified by co-culture with Staphylococcus aureus and Escherichia coli. It was confirmed that the expression of collagen and HIF1-α in fibroblasts was significantly increased in vitro. And the mitochondrial activity of the vascular and nerve was increased considerably. In vivo, the healing time of diabetes wounds treated with the biomimetic repair membrane was significantly reduced, the collagen and the number of pores were increased considerably, and vascular regeneration was enhanced. The biomimetic repair membrane has an excellent performance in photocatalytic oxygen evolution and antibacterial and can significantly promote the repair of diabetes wounds. This will provide a promising treatment for diabetes wound repair.

SELECTION OF CITATIONS
SEARCH DETAIL