Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 159
Filter
1.
Waste Manag ; 177: 24-33, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38290345

ABSTRACT

The biodrying technology as a pretreatment technology can overcome the limitations of cement kilns co-incineration sewage sludge (SS) on energy consumption. But the impact of SS biodried products on cement kilns and the route carbon reduction potential of biodrying + cement kilns have not been studied. In this study, SS biodrying and cement kiln co-incineration biodried product trials were conducted to highlight the matrix combustion characteristics, and the impact of biodried products on cement kilns (clinker capacity, coal consumption, and pollutant discharge). The carbon emissions of the four scenarios were assessed based on these results. The results showed that water removal rate reached 65.5 % after 11-day biodrying, and the wet-based lower heating value of the biodried product increased by 76.0 % compared with the initial matrix. Comprehensive combustibility index of the biodried product (0.745 × 10-7 %2℃-3min-2) was better than that of SS (0.433 × 10-7 %2℃-3min-2) although a portion of the organic matter was degraded. Cement kiln co-incineration of biodried products (150 t/d) resulted in per tonne of clinker saved 5.61 kg of coal due to the heat utilization efficiency of biodried products reached to 93.7 %. However, it led to an increase in the emission concentrations of NOX and SO2. Assessment results indicated that the biodrying + cement kiln pathway reduced CO2 emissions by 385.7 kg/t SS. Biodried products have greater potential to reduce emissions as alternative fuels than as fertilizers. This study indicated the advantages of SS biodrying + cement kiln co-incineration route.


Subject(s)
Carbon , Sewage , Coal , Hot Temperature , Incineration
2.
Sci Total Environ ; 917: 170428, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38286275

ABSTRACT

The lack of one-to-one olfactory thresholds (OTs) poses an obstacle to the comprehensive assessment of priority odorants emitted from swine slurry using mass spectrometric nontarget screening. This study screened out highly performing quantitative structure-activity relationship (QSAR) models of OT prediction to complement nontarget screening in olfactory perception evaluation. A total of 27 compounds emitted at different slurry removal frequencies were identified and quantified using gas chromatography-mass spectrometry (GC-MS), including thiirane, dimethyl trisulfide (DMTS), and dimethyl tetrasulfide (DMQS) without OT records. Ridge regression (RR, R2 = 0.77, RMSE = 0.93, MAE = 0.73) and random forest regression (RFR, R2 = 0.76, RMSE = 0.97, MAE = 0.69) rather than the commonly used principal component regression (PCR) and partial least squares regression (PLSR) were used to assign OTs and assess the contributions of emerging volatile sulfur compounds (VSCs) to the sum of odor activity value (SOAV). Priority odorants were p-cresol (25.0-58.9 %) > valeric acid (8.3-31.7 %) > isovaleric acid (6.7-19.0 %) > dimethyl disulfide (4.7-15.7 %) > methanethiol (0-13.6 %) > isobutyric acid (0-8.6 %), whereas the contributions of three emerging VSCs were below 10 %. Vital olfactory active structures were identified by QSAR models as having high molecular polarity, high hydrophilicity, high charge quantity, flexible structure, high reactivity, and a high number of sulfur atoms. This protocol can be further extended to evaluate odor pollution levels for distinct odor sources and guide the development of pertinent deodorization technologies.


Subject(s)
Odorants , Volatile Organic Compounds , Animals , Swine , Odorants/analysis , Sulfur Compounds , Smell , Sulfur , Gas Chromatography-Mass Spectrometry , Volatile Organic Compounds/analysis
3.
Sci Total Environ ; 915: 170074, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38218467

ABSTRACT

Soil contamination by multimetals is widespread. Hyperaccumulator-crop intercropping has been confirmed to be an effective method for arsenic (As)- or cadmium (Cd)-contaminated soil that can achieve soil cleanup and agricultural production. However, the influencing factors and response of hyperaccumulator-crop intercropping to multimetal-contaminated soil are still unclear. In this study, intercropping of the As hyperaccumulator Pteris vittata and maize was conducted on two typical types of multimetal-contaminated soil, namely, Soil A contaminated by As, Cd, and lead (Pb) and Soil B contaminated by As, Cd, and chromium (Cr). Intercropping reduced As, Cd, and Pb in the maize grains by 60 %, 66.7 %, and 20.4 %, respectively. The concentrations of As, Cd, Pb, and Cr in P. vittata increased by 314 %, 300 %, 447.3 %, and 232.6 %, respectively, relative to their concentrations in the monoculture plants. Two soils with different levels of contamination showed that higher heavy metal content might diminish the ability of intercropping to reduce soil heavy metal risk. No notable difference in soil microbial diversity was found between the intercropped and monocultured plants. The composition of microbial communities of intercropping groups were more similar to those of monoculture P. vittata on two different soils (Soils A and B). An imbalance between the amount of As taken up by the plants and the reduction in As in the soil was observed, and this imbalance may be related to watering, As leaching, and heterogeneity of soil As distribution. Reducing the risk resulting from As leaching and enhancing the efficiency of phytoextraction should be emphasized in remediation practices.


Subject(s)
Arsenic , Metals, Heavy , Pteris , Soil Pollutants , Cadmium/analysis , Zea mays , Lead , Biodegradation, Environmental , Soil Pollutants/analysis , Metals, Heavy/analysis , Arsenic/analysis , Soil , Chromium
4.
Chemosphere ; 350: 140936, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38159737

ABSTRACT

Identifying driving factors is of great significance for understanding the mechanisms of soil pollution. In this study, a data processing method for driving factors was analyzed to explore the genesis of Arsenic (As) pollution in mining areas. The wind field that affects the atmospheric diffusion of pollutants was simulated using the standard k-ε model. Machine learning and GeoDetector methods were used to identify the primary driving factors. The results showed that the prediction performances of the three machine learning models were improved after data processing. The R2 values of random forest (RF), support vector machine, and artificial neural network increased from 0.45, 0.69, and 0.24 to 0.55, 0.76, and 0.52, respectively. The importance of wind increased from 20.85% to 26.22%. The importance of distance to the smelter plant decreased from 43.26% to 33.19% in the RF model. The wind's driving force (q value) increased from 0.057 to 0.235 in GeoDetector. The average value of historical atmospheric dust reached 534.98 mg/kg, indicating that atmospheric deposition was an important pathway for As pollution. The outcome of this study can provide a direction to clarify the mechanisms responsible for soil pollution at the mining area scale.


Subject(s)
Arsenic , Metals, Heavy , Soil Pollutants , Soil , Soil Pollutants/analysis , Environmental Monitoring/methods , Metals, Heavy/analysis , Mining , Arsenic/analysis , China , Risk Assessment
5.
J Hazard Mater ; 460: 132463, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37690196

ABSTRACT

Pteris vittata, as the firstly discovered arsenic (As) hyperaccumulator, has great application value in As-contaminated soil remediation. Currently, the genes involved in As hyperaccumulation in P. vittata have been mined continuously, while they have not been used in practice to enhance phytoremediation efficiency. Aiming to better assist the practice of phytoremediation, this review collects 130 studies to clarify the progress in research into the As hyperaccumulation process in P. vittata from multiple perspectives. Antioxidant defense, rhizosphere activities, vacuolar sequestration, and As efflux are important physiological activities involved in As hyperaccumulation in P. vittata. Among related 19 genes, PHT, TIP, ACR3, ACR2 and HAC family genes play essential roles in arsenate (AsⅤ) transport, arsenite (AsⅢ) transport, vacuole sequestration of AsⅢ, and the reduction of AsⅤ to AsⅢ, respectively. Gene ontology enrichment analysis indicated it is necessary to further explore genes that can bind to related ions, with transport activity, or with function of transmembrane transport. Phylogeny analysis results implied ACR2, HAC and ACR3 family genes with rapid evolutionary rate may be the decisive factors for P. vittata as an As hyperaccumulator. A deeper understanding of the As hyperaccumulation network and key gene components could provide useful tools for further bio-engineered phytoremediation.


Subject(s)
Arsenic , Pteris , Phylogeny , Pteris/genetics , Molecular Biology , Plant Physiological Phenomena
6.
Huan Jing Ke Xue ; 44(5): 2786-2798, 2023 May 08.
Article in Chinese | MEDLINE | ID: mdl-37177951

ABSTRACT

Phytoremediation, as a green and effective in-situ remediation technology for heavy metal-contaminated soil, has attracted the attention of Chinese scholars and has resulted in a series of achievements over the past 20 years. In this study, the species characteristics, distribution of field discovery sites in various vegetation zones, habitat characteristics, habitat geological characteristics, and geochemistry of cadmium (Cd) of the Cd hyperaccumulators in China reported in the relevant literature from the past 20 years (from 2002 to 2021) were summarized by searching for related keywords. Finally, suggestions were proposed for the screening of new Cd hyperaccumulators. The results showed that a total of 45 species of Cd hyperaccumulators in China have been reported so far. In terms of plant species, they belonged to 22 families and 36 genera, among which Compositae with 14 species was the most abundant. There were 25 species discovered through the field investigation, which were mainly distributed in the subtropical broadleaf evergreen forest region of southern China. Additionally, the Cd hyperaccumulators discovered by field surveys were mainly found in high Cd-concentrated soils surrounding lead-zinc mines. In conclusion, abundant plant resources, high concentrations of heavy metal soils, and long-term domestication jointly promoted the formation of hyperaccumulators. Therefore, the region with these three points could be considered a high probability region for the presence of hyperaccumulators, and the screening of hyperaccumulators could be carried out around this. We proposed that the screening of new hyperaccumulators can be carried out through the following six steps:the identification and investigation of high probability areas, the enrichment capability test, the enrichment capability test in low concentration levels, the enrichment capability test between different ecotypes, the succession of enrichment capability, and the test of remediation proficiency.


Subject(s)
Metals, Heavy , Soil Pollutants , Humans , Cadmium/analysis , Soil Pollutants/analysis , Plants , Biodegradation, Environmental , China , Soil , Forests
7.
Sci Total Environ ; 880: 163246, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37019239

ABSTRACT

Organic waste comprises a large amount of hydrocarbon containing organic substances, which is regarded as a potential resource rather than simply a waste. A field experiment was conducted in a poly-metallic mining area to investigate the potential of organic waste to facilitate the soil remediation process. Different organic wastes and a commonly used commercial fertilizer were added to heavy metal contaminated soil, which was under phytoremediation using the As hyperaccumulator Pteris vittata. The influence of diverse fertilizer regimes on the biomass of P. vittata and heavy metal removal by P. vittata, was investigated. The soil properties were analyzed after the application of phytoremediation with or without the addition of organic wastes. Results indicated that sewage sludge compost is an appropriate amendment to improve the phytoremediation efficiency. Compared to the control, the application of sewage sludge compost significantly reduced the extractability of As in soil by 26.8 %, and increased the removal of As and Pb by 26.9 % and 186.5 %, respectively. The highest removal of As and Pb reached 33 and 34 kg/ha, respectively. The sewage sludge compost-strengthened phytoremediation improved soil quality. And the diversity and richness of the bacterial community were improved, as represented by the increase in Shannon and Chao index. With improved efficiency and acceptable cost, the organic waste-strengthened phytoremediation can be used to control the risks posed by high concentrations of heavy metals in mining areas.


Subject(s)
Arsenic , Metals, Heavy , Pteris , Soil Pollutants , Sewage , Fertilizers , Biodegradation, Environmental , Lead , Soil Pollutants/analysis , Metals, Heavy/analysis , Soil , Arsenic/analysis
8.
J Hazard Mater ; 445: 130560, 2023 03 05.
Article in English | MEDLINE | ID: mdl-37055969

ABSTRACT

Considering the soil cadmium pollution problem, the Chinese government proposed to estimate the costs and practicality "to completely improve the soil quality by the middle of this century". This study analyzed the challenges in achieving this goal using biophysical data from 10 typical demonstration soil phytoextraction projects. The current annual phytoextraction efficiency was determined as 14.8-490 g ha-1 a-1 at 319 RMB g-1 cadmium. A total of 798 billion RMB and 5 years were required for remediation of cadmium contamination, which was 22 times the investment in soil remediation during 2016-2022. The break-even point of phytoextraction projects was 29 years. The heavy financial burden was considered the primary challenge in improving the environmental quality of such soil. The cost could be reduced by 5.5-35.3 % through optimization measures such as resourcefulness of hyperaccumulator harvests, large-scale breeding, and mechanized management. The break-even point could be shortened to 6-15 years by intercropping/rotating crops, contributing to the goal. Active exploration of phytoextraction efficiency-more efficient accumulators, optimized agronomic measures-is worth practicing.


Subject(s)
Cadmium , Soil Pollutants , Cadmium/analysis , Biodegradation, Environmental , Soil Pollutants/analysis , Soil , China
9.
Sci Total Environ ; 879: 163034, 2023 Jun 25.
Article in English | MEDLINE | ID: mdl-36990239

ABSTRACT

Intercropping the arsenic (As) hyperaccumulator Pteris vittata with fruit trees can safely yield peaches in As-polluted orchards in South China. However, the soil As remediation effects and the related mechanisms of P. vittata intercropped with peach trees with additives in the north temperate zone have rarely been reported. A field experiment was conducted to systematically study the intercropping of peach (Amygdalus persica) with P. vittata with three additives [calcium magnesium phosphate (CMP), ammonium dihydrogen phosphate (ADP), and Stevia rebaudiana Bertoni residue (SR)] in a typical As-contaminated peach orchard surrounding a historical gold mine in Pinggu County, Beijing City. The results showed that compared with monoculture (PM) and intercropping without addition (LP), the remediation efficiency of P. vittata intercropping was significantly increased by 100.9 % (CMP) to 293.5 % (ADP). CMP and ADP mainly compete with available As (A-As) adsorbed to the surface of Fe-Al oxide through PO43-, while SR might activate A-As by enhancing dissolved organic carbon (DOC) in P. vittata rhizospheres. The photosynthetic rates (Gs) of intercropped P. vittata were significantly positively correlated with pinna As. The intercropping mode applied with the three additives did not obviously affect fruit quality, and the net profit of the intercropping mode (ADP) reached 415,800 yuan·ha-1·a-1. The As content in peaches was lower than the national standard in the intercropping systems. Comprehensive analysis showed that A. persica intercropped with P. vittata applied with ADP is better than other treatments in improving risk reduction and agricultural sustainability. In this study, a theoretical and practical basis is provided for the safe utilization and remediation of As-contaminated orchard soil in the north temperate zone.


Subject(s)
Arsenic , Pteris , Soil Pollutants , Arsenic/analysis , Pteris/chemistry , Biodegradation, Environmental , Soil Pollutants/analysis , Soil/chemistry
10.
Chemosphere ; 319: 138019, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36736483

ABSTRACT

The influence of environmental factors on Cd accumulation by Hylotelephium spectabile and its physiological mechanisms are unclear. A field trial was conducted to investigate the effects of nitrogen, soil moisture, and light regulation on plant growth, Cd absorption and translocation, and the photosynthetic characteristics of two H. spectabile populations (LN with high Cd accumulation capacity and HB1 with relatively low Cd accumulation capacity). The results showed that Cd accumulation in LN was 59.6% higher than that in HB1 which may partly be explained by the inherent high transpiration rate of LN, especially at the terminal stage. In addition, the photosynthetic rate of LN responded more positively to nitrogen than HB1, which further amplified its advantages on plant growth and Cd accumulation. Moderate drought significantly stimulated root growth of LN, indicating that LN possesses stronger resistance to drought. Shade inhibited Cd distribution, rather than directly affecting Cd concentrations in H. spectabile. The combined stress of shade and drought had a synergistic effect on Cd translocation in H. spectabile. Moreover, LN achieved 17.3%∼444.5% higher transpiration levels than HB1 under environmental stress, which ensured a more efficient Cd transport capacity of LN. Therefore, the investigation of photosynthetic characteristics further revealed the physiological mechanism by which LN accumulated Cd superior to HB1 under environmental stress and responded more positively to nitrogen nutrition.


Subject(s)
Cadmium , Soil Pollutants , Cadmium/analysis , Nitrogen/pharmacology , Biodegradation, Environmental , Soil Pollutants/analysis , Photosynthesis , Soil , Plant Roots/chemistry
11.
Sci Total Environ ; 857(Pt 2): 159460, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36257443

ABSTRACT

Back mixing was frequently used to replace conventional bulking agenting, however, however, the internal effect mechanism was unclear. This study compared four bulking agents: mushroom residue (MR), MR + primary BM (BM-P), BM-P, and secondary BM (BM-S). The effect mechanism of back mixing (BM) inoculation was assessed based on biodrying performance and microbial community succession. Four trials (Trial A, Trial B, Trial C, and Trial D) reached maximum temperatures of 61.9, 68.8, 73.7, and 69.9 °C on days 6, 3, 2, and 2, respectively. Application of BM increased pile warming rate and resulted in higher temperatures. Temperature changes and microbial competition lead to decline in microbial diversity and richness during the biodrying process. Microbial diversity increased of four biodried products. The number of microorganisms shared by Trial A, Trial B, Trial C, and Trial D were 90, 119, 224, and 300, respectively. The addition of BM improved microbial community stability, and facilitating the initiation of biodrying process. Microbial genera that played an important role in the biodrying process included Ureibacillus, Bacillus, Sphaerobacter, and Tepidimicrobium. Based on these results, it was concluded that BM was efficient method to enhanced the microbial activity and reduced the usage of bulking agent.


Subject(s)
Bacillus , Microbiota , Sewage/chemistry , Hot Temperature , Temperature
12.
Int J Phytoremediation ; 25(3): 339-349, 2023.
Article in English | MEDLINE | ID: mdl-35689343

ABSTRACT

Intercropping a Cd-accumulator with economically valuable crops is common in slightly or moderately Cd-polluted farmland soils. A field experiment was conducted to evaluate the effects of water-soluble chitosan (WSC) on the growth and Cd uptake of the Cd-accumulator Hylotelephium spectabile and soybean (Glycine max) during a co-cultivation in Cd-contaminated agricultural soil (WSC, 0 and 10 g·m-2). The results indicated that soybean yields were highest in response to the intercropping and WSC treatment. The results from the field trials generally showed that intercropping and WSC treatments significantly decreased Cd concentrations in inedible parts of soybean by 42.9-72.1% (except for stems), in the meantime, increased 95.8%-334.6% in shoot and root tissues of H. spectabile compared with the control (p < 0.05). The data revealed that Cd uptake was highest for H. spectabile during the intercropping and WSC treatment. The application of WSC in the intercropping system significantly increased the uptake of Cd by H. spectabile, but not by soybean. The findings of this study suggest that combining an intercropping system with a WSC treatment may be better for remediating Cd-contaminated soils than other methods involving the growth of a single hyperaccumulator.


This paper clearly focused on the accumulation and uptake of Cd in the system of intercropping of Cd-accumulator (Hylotelephium spectable) and soybean (Glycine max) grown in Cd-polluted farmland soils supplied with water-soluble chitosan (WSC) under field conditions. Some studies mainly focused on active agent to promote remediation efficiency of (hyper) accumulators. This study indicated that combining the intercropping system with WSC may be better for remediating Cd-contaminated soils than the methods involving a single hyperaccumulator.


Subject(s)
Chitosan , Soil Pollutants , Glycine max/physiology , Cadmium , Soil , Soil Pollutants/analysis , Biodegradation, Environmental , Crops, Agricultural
13.
Sci Total Environ ; 857(Pt 3): 159698, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36309258

ABSTRACT

The existing spatial interpolation methods in the prediction of soil heavy metal distribution are generally based on spatial auto correlation theory, rarely considering the pollution patterns. By contrast, in polluted sites, heavy metals have a strong heterogeneity even within a very small area, which is not exactly in line with auto correlation theory. This contradiction may lead to inaccuracy in spatial prediction. Atmospheric diffusion and deposition are one of the main sources of soil heavy metal pollution caused by coal-related production activities. To improve the prediction accuracy, the diffusion patterns of pollutants were considered in this paper by integrating Geodetector, Co-Kriging (COK), and partition interpolation. Geodetector was used to identify the main driving factors of soil pollution, based on which, the main driving factors were used as covariates introduced into the interpolation method (COK). Specifically, the amount of particulate matter deposition obtained by a pollutant diffusion model (AERMOD) was used as a covariate. For comparison, the distances to quenching, coke oven, and ammonium sulfate section were also used as covariates. Compared with the Ordinary Kriging method, the method COK-AERMOD established here decreased the root mean square error values of As (2.05 reduced to 1.89), Cd (0.18 reduced to 0.16), Cr (19.07 reduced to 12.97), Cu (6.92 reduced to 4.72), Hg (0.32 reduced to 0.28), Ni (16.92 reduced to 16.10), Pb (18.29 reduced to 16.62), and Zn (159.68 reduced to 153.66). This method in this paper is informative for the interpolation of soil elements in contaminated areas with known pollution source and diffusion patterns.


Subject(s)
Coke , Metals, Heavy , Soil Pollutants , Soil , Soil Pollutants/analysis , Environmental Monitoring/methods , Metals, Heavy/analysis , Environmental Pollution , China , Risk Assessment
14.
Sci Total Environ ; 855: 158652, 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36108864

ABSTRACT

Due to the public health concern of arsenic, environmental management measures in mining areas had been implemented. To assess the effect of environmental management measures in the mining area comprehensively, arsenic accumulation in the urine, hair, nails, and urinary metabolites of residents in a realgar mining area in Hunan province, China were investigated in 2019, and the changes in arsenic levels in the biomarkers during 2012-2019 were tracked. The importance of confounding factors (age, sex, occupation, residence, clinical history, vegetable source, cooking fuel, smoking, alcohol consumption, BMI) was analyzed using the Boruta algorithm. After the implementation of environmental management measures (including ceasing mining and smelting activities, building landfills, adjusting the planting structure, and soil restoration), urine, hair, and nail arsenic concentration decreased drastically but were still excessive. Arsenic accumulation was highest in older male miners who were long settled in the mining area and consumed homegrown vegetables. The only factor for changes in urinary arsenic levels was the cooking fuel type; residents using wood as cooking fuel experienced sustained arsenic exposure. Occupation and sex were important for determining arsenic changes in the hair and nails. Short-term arsenic accumulation in urine was affected by arsenic exposure, while long-term accumulation in hair and nails by arsenic metabolic capacity. The percentage of urinary arsenic metabolism and arsenic methylation indices of the participants in the mining area were within the normal range (%iAs: 10-30 %, %MMA: 10-20 %, % DMA: 60-80 %); samples indicated worse metabolic capacity than the reference population. The arsenic metabolic capacity of male miners was relatively weak, probably aggravated by alcohol drinking and smoking. Without soil remediation, arsenic exposure will continue. Homegrown vegetables and biomass fuels should be abandoned; reduced cigarette and alcohol consumption is recommended. Urinary arsenic would be more proper for assessing environmental remediation in mining areas.


Subject(s)
Arsenic , Humans , Male , Aged , Arsenic/analysis , Conservation of Natural Resources , Environmental Exposure/analysis , Mining , Soil
15.
Huan Jing Ke Xue ; 43(9): 4779-4790, 2022 Sep 08.
Article in Chinese | MEDLINE | ID: mdl-36096618

ABSTRACT

In order to explore the distribution characteristics of heavy metal contamination of farmland soil surrounding Luancheng town, Shijiazhuang City, Henan province, the concentrations of As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn in the surface soil and crops were determined and assessed. The principal components were also analyzed for source apportionment. The heavy metal concentrations in crops were further detected, and the non-carcinogenic health risks in the study area were evaluated using the probabilistic risk assessment method, as to provide a theoretical basis for the treatment, prevention, and control of heavy metal pollution in farmland soil in Luancheng. According to the results, ω(Cd), ω(Cr), ω(Cu), ω(Pb), and ω(Zn) in the soils were 0.06-1.08, 22.14-473.47, 12.83-150.74, 10.75-577.72, and 62.23-652.78 mg·kg-1, which exceeded the standard with over-standard rates reaching 1.83%, 1.22%, 0.61%, 0.61%, and 1.22%, respectively. Further, Cd and Pb were transported into crops, in which Cd concentrations exceeded the standard in some corn samples, and Cd and Pb concentrations exceeded the standard in some wheat samples. The total non-carcinogenic health risks (TTHQ) to the human body caused by the consumption of heavy metals in corn grown in the study area were all less than 1, with no obvious negative effects, and TTHQ was higher than 1 in wheat, increasing the likelihood of negative impacts on the human body. With the influence of the distribution of pollution-related enterprises in the industrial zone, heavy metal concentrations were higher in the south, west, and middle directions of the study area. Among them, the study area soil was slightly contaminated by Cd (Level 1). Cd and Hg had a slight potential ecological risk (Level 2), whereas other heavy metals had low potential ecological risk (Level 1). In general, most of the surface cultivated soil was not obviously polluted by heavy metals in the study area. According to the PMF results and survey, we speculated that soil heavy metals mainly came from soil parent material (52.05%), artificial pollution sources (historical sewage irrigation and industrial manufacture) (32.98%), and atmospheric deposition (14.97%). To summarize, the study area should be divided into a priority protection category and safe utilization category. The input of pollution sources should be strictly controlled for the priority protection category, and alternative planting, rotating, and fallow should be implemented for the safe utilization category to reduce the risk of standard-exceeding agricultural products.


Subject(s)
Mercury , Metals, Heavy , Soil Pollutants , Cadmium , Crops, Agricultural , Environmental Monitoring , Farms , Humans , Lead , Metals, Heavy/analysis , Risk Assessment , Soil , Soil Pollutants/analysis
16.
Chemosphere ; 307(Pt 2): 135923, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35944674

ABSTRACT

Identifying pollution sources and quantifying their contributions are of great importance for proposing management and control strategies of potentially toxic elements (PTEs) in soil. In this study, multivariate statistical analysis and receptor models were combined to identify potential pollution sources and apportion their contributions at an abandoned realgar mine. Principal component analysis (PCA) result shows that three factors are responsible for PTEs, which is also supported by cluster analysis (CA). Correlation analysis and spatial analysis also show that the heavy metals from the same pollution source are of higher correlation coefficients and similar spatial distribution. Three receptor models were combined to apportion contributions of pollution sources. Three pollution sources were detected by absolute principal component analysis-multiple linear regression (APCA-MLR). In contrast, four sources were identified by positive matrix factorization (PMF) and UNMIX. Soil parent material was heavily loaded on Cr, Cu, Ni and Zn, occupying the largest average contribution (30%-43%). Cadmium was mainly derived from agricultural activities with contribution higher than 60%. Arsenic accumulation was mainly associated with mining and smelting activity with contribution higher than 80%. PMF and UNMIX models showed that more than half of Pb concentrations were influenced by industrial activities. Comparatively speaking, APCA-MLR was a well-performing model for all PTEs even though it only detected three pollution sources. The study showed that it was a good choice to apply multiple receptor models in order to achieve more reliable and objective conclusions of source appointment.


Subject(s)
Arsenic , Metals, Heavy , Soil Pollutants , Arsenic/analysis , Arsenicals , Cadmium/analysis , China , Environmental Monitoring , Lead/analysis , Metals, Heavy/analysis , Risk Assessment , Soil , Soil Pollutants/analysis , Sulfides
17.
J Hazard Mater ; 438: 129468, 2022 09 15.
Article in English | MEDLINE | ID: mdl-35779398

ABSTRACT

The accurate identification of sources for soil heavy metal(loid) is difficult, especially for multi-functional parks, which include multiple pollution sources. Aiming to identify the apportionment and location of heavy metal(loid)s pollution sources, this study established a method combining principal component analysis (PCA), Geodetector, and multiple linear regression of distance (MLRD) in soil and dust, taking a multi-functional industrial park in Anhui Province, China, as an example. PCA and Geodetector were used to determine the type and possible location of the source. Source apportionment of individual elements is achieved by MLRD. The detection results quantified the spatial explanatory power (0.21 ≤ q ≤ 0.51) of the potential source targets (e.g., river and mining area) for the PCA factors. A comparative analysis of the regression equation (Model 1 and Model 3) indicated that the river (0.50 ≤ R2 ≤0.78), main road (0.47 ≤ R2 ≤ 0.81), and mine (0.14 ≤ R2 ≤ 0.92) (p < 0.01) were the main sources. Different from the traditional source apportionment methods, the current method could obtain the exact contributing sources, not just the type of source (e.g., industrial activities), which could be useful for pollution control in areas with multiple sources.


Subject(s)
Metals, Heavy , Soil Pollutants , China , Dust/analysis , Environmental Monitoring/methods , Linear Models , Metals, Heavy/analysis , Principal Component Analysis , Risk Assessment , Soil , Soil Pollutants/analysis
18.
Bioresour Technol ; 360: 127597, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35835422

ABSTRACT

Odor is inevitably produced during sewage sludge composting, and the subsequent pollution hinders the further development of composting technologies. Third-generation high-throughput sequencing was used to analyze microbial community succession, and the correlations between odor and microbial communities were evaluated. Hydrogen sulfide (47.5-87.9 %) and ammonia (9.4-49.9 %) contributed majorly to odor emissions, accounting for 93.7-98.5 % of the emissions. Volatile sulfur compounds were mainly produced in the mesophilic and pre-thermophilic phases (43.0-83.4 %), whereas ammonia was mainly produced in the thermophilic phase (52.1-59.4 %). Microorganisms dominant in the mesophilic and thermophilic phases correlated positively with odor production in the following order: Rhodocyclaceae > Clostridiaceae_1 > Hyphomicrobiaceae > Acidimicrobiales > Family_XI, whereas those dominant in the cooling phase showed negative correlations with odor production in the following order: Bacillus > Sphingobacteriaceae > Pseudomonadaceae > DSSF69 > Chitinophagaceae. The back mixing of mature compost is expected to serve as an economical measure for controlling odor during sewage sludge composting.


Subject(s)
Composting , Ammonia , Odorants/analysis , Sewage , Soil , Sulfur Compounds
19.
Sci Total Environ ; 841: 156708, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-35718183

ABSTRACT

The arsenic (As) hyperaccumulator has become a model plant for the study of the interaction between plants and trace elements. However, the change in As concentration, distribution and speciation of hyperaccumulator Pteris vittata at different growth stages, especially with the aging process remains unknown. We collected P. vittata at different growth ages and analyzed As concentration, distribution, and speciation. Furthermore, metabolic profiling was conducted for P. vittata at different growth stages. With aging, the reduced glutathione/ oxidized glutathione ratio decreased while the malondialdehyde content increased, accompanied by the change in the main As speciation in P. vittata from arsenite to arsenate. Metabolic profiling also indicated significant difference in the compositions of metabolites during different growth stages. Specifically, flavonoid compounds were found to be positively correlated with As concentration. Results indicated that with the aging of P. vittata, the redox potential increased in the pinnae, leading to the oxidation of As, which may have impacted the distribution of As in this fern. Furthermore, the correlation between As concentration and flavonoid compounds implied the essential role of flavonoid metabolism in the accumulation and transport of As in this plant.


Subject(s)
Arsenic , Pteris , Soil Pollutants , Arsenic/analysis , Biodegradation, Environmental , Flavonoids , Oxidation-Reduction , Plant Roots/metabolism , Pteris/metabolism , Soil Pollutants/analysis
20.
Waste Manag ; 141: 220-230, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35149478

ABSTRACT

Sewage sludge bio-drying technology has attracted considerable attention in recent years. In this study, we explored the water-heat balance under two ventilation strategies for the first time in bio-drying plants with circulated air, and examined the influence of air circulation on water removal and heat recovery. We want to obtain the relationships of pile temperature, ventilation, and water removal. Then, it provides support for optimizing the bio-drying process conditions and improving the efficiency through analysis of the water-heat relationship. In the low-ventilation and high-ventilation trials, water removed was mainly on Days 9-12 and 1-4, respectively. Ventilation and pile temperature jointly determine the water removed during the bio-drying process. Water balance indicated that more than 30% of the water was removed under the nonventilated process. More organic matter was degraded to maintain a higher pile temperature under low-ventilation than under high-ventilation, which also led to more radiation heat being lost. High-ventilation trial input less energy (3.36 MJ/kg water removed) but obtained a higher bio-drying index I (7.04) and heat utilization efficiency Qeffic (94.1%). Heat balance showed that lower energy consumption by dry air (Qdryair) was obtained due to circulation air with high temperature. Circulation air also has a higher carried capacity of water vapor but carries more water into the pile due to higher humidity.

SELECTION OF CITATIONS
SEARCH DETAIL
...