Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Environ Int ; 187: 108658, 2024 May.
Article in English | MEDLINE | ID: mdl-38640612

ABSTRACT

During the unprecedented COVID-19 city lockdown, a unique opportunity arose to dissect the intricate dynamics of urban air quality, focusing on ultrafine particles (UFPs) and volatile organic compounds (VOCs). This study delves into the nuanced interplay between traffic patterns and UFP emissions in a subtropical urban setting during the spring-summer transition of 2021. Leveraging meticulous roadside measurements near a traffic nexus, our investigation unravels the intricate relationship between particle number size distribution (PNSD), VOCs mixing ratios, and detailed vehicle activity metrics. The soft lockdown era, marked by a 20-27% dip in overall traffic yet a surprising surge in early morning motorcycle activity, presented a natural experiment. We observed a consequential shift in the urban aerosol regime: the decrease in primary emissions from traffic substantially amplified the role of aged particles and secondary aerosols. This shift was particularly pronounced under stagnant atmospheric conditions, where reduced dilution exacerbated the influence of alternative emission sources, notably solvent evaporation, and was further accentuated with the resumption of normal traffic flows. A distinct seasonal trend emerged as warmer months approached, with aromatic VOCs such as toluene, ethylbenzene, and xylene not only increasing but also significantly contributing to more frequent particle growth events. These findings spotlight the criticality of targeted strategies at traffic hotspots, especially during periods susceptible to weak atmospheric dilution, to curb UFP and precursor emissions effectively. As we stand at the cusp of widespread vehicle electrification, this study underscores the imperative of a holistic approach to urban air quality management, embracing the complexities of primary emission reductions and the resultant shifts in atmospheric chemistry.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Cities , Environmental Monitoring , Particulate Matter , SARS-CoV-2 , Vehicle Emissions , Volatile Organic Compounds , COVID-19/epidemiology , Particulate Matter/analysis , Volatile Organic Compounds/analysis , Vehicle Emissions/analysis , Air Pollutants/analysis , Air Pollution/statistics & numerical data , Humans , Seasons , Pandemics , Particle Size , Aerosols/analysis , Betacoronavirus , Coronavirus Infections/epidemiology , Pneumonia, Viral/epidemiology
2.
Environ Sci Pollut Res Int ; 31(7): 9935-9947, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37004617

ABSTRACT

Resource recovery is crucial for small- and medium-sized enterprises to attain a circular economy. The economic benefits of recovering precious metals from electronic waste, such as waste printed circuit boards (WPCBs), are hindered by secondary pollutant emissions from pretreatment processes. This study aims to recover copper from the WPCB acid leaching process and reduce NOx emissions through the use of a high gravity rotating packed bed (RPB). The results indicate that the copper recovery ratio increases to 99.75% through the displacement reaction between iron powder and copper nitrate. The kinetic analysis of copper dissolution was employed to simulate the NOx emissions during acid leaching, with an R-squared value of 0.872. Three oxidants, including H2O2(aq), ClO2(aq), and O3(g), with pH adjusted to different NaOH concentrations, were used to remove NOx. The greatest NOx removal rate was achieved using a 0.06 M NaOH solution, with a removal rate of 91.2% for ozone oxidation at a 152-fold gravity level and a gas-to-liquid (G/L) ratio of 0.83. The gas-side mass transfer coefficients (KGa) for NOx range from 0.003 to 0.012 1/s and are comparable to previous studies. The results of a life cycle analysis indicate that the NOx removal rate, nitric acid recycling rate, and copper recovery rate are 85%, 80%, and 100%, respectively, reducing the environmental impact on the ecosystem, human health, and resource depletion by 10% compared to a scenario with no NOx removal.


Subject(s)
Copper , Electronic Waste , Humans , Copper/analysis , Ecosystem , Kinetics , Sodium Hydroxide/analysis , Metals , Recycling/methods , Acids , Electronic Waste/analysis
3.
Sci Total Environ ; 912: 169055, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38056663

ABSTRACT

Characteristics extraction and anomaly analysis based on frequency spectrum can provide crucial support for source apportionment of PM2.5 pollution. In this study, an effective source apportionment framework combining the Fast Fourier Transform (FFT)- and Continuous Wavelet Transform (CWT)-based spectral analyses and Positive Matrix Factorization (PMF) receptor model is developed for spectrum characteristics extraction and source contribution assessment. The developed framework is applied to Beijing during the winter heating period with 1-h time resolution. The spectrum characteristics of anomaly frequency, location, duration and intensity of PM2.5 pollution can be captured to gain an in-depth understanding of source-oriented information and provide necessary indicators for reliable PMF source apportionment. The combined analysis demonstrates that the secondary inorganic aerosols make relatively high contributions (50.59 %) to PM2.5 pollution during the winter heating period in Beijing, followed by biomass burning, vehicle emission, coal combustion, road dust, industrial process and firework emission sources accounting for 15.01 %, 11.00 %, 10.70 %, 5.31 %, 3.88 %, and 3.51 %, respectively. The source apportionment result suggests that combining frequency spectrum characteristics with source apportionment can provide consistent rationales for understanding the temporal evolution of PM2.5 pollution, identifying the potential source types and quantifying the related contributions.

4.
Sci Total Environ ; 870: 161733, 2023 Apr 20.
Article in English | MEDLINE | ID: mdl-36682561

ABSTRACT

Submicron and ultrafine particle (UFP) exposure may be epidemiologically and toxicologically linked to pulmonary, neurodegenerative, and cardiovascular diseases. This study explores UFP and fine particle sources using a positive matrix factorization (PMF) model based on PM2.5 chemical compositions and particle number size distributions (PNSDs). The particle chemical composition and size distribution contributions are simultaneously identified to evaluate lung deposition and excess cancer risks. High correlations between the PNSD and chemical composition apportionment results were observed. Fresh and aged traffic particles dominated the number concentrations, while heterogeneous, photochemical reactions and/or regional transport may have resulted in secondary aerosol formation. Fresh and aged road traffic particle sources mostly contributed to the lung deposition dosage in the pulmonary region (~53 %), followed by the tracheobronchial (~30.4 %) and head regions (~16.6 %). However, lung-deposited surface area (LDSA) concentrations were dominated by aged road traffic (~39.2 %) and secondary aerosol (~33.2 %) sources. The excess cancer risks caused by Cr6+, Ni, and As were also mainly contributed to by aged road traffic (~31.7 %) and secondary aerosols (~67 %). The source apportionments based on the physical and chemical properties of aerosol particles are complementary, offering a health impact benchmark of UFPs in a Southeast Asia urban city.


Subject(s)
Air Pollutants , Neoplasms , Humans , Aged , Particulate Matter/analysis , Air Pollutants/analysis , Particle Size , Environmental Monitoring , Lung , Aerosols/analysis
5.
Environ Res ; 216(Pt 2): 114523, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36270534

ABSTRACT

Acute exposure to fresh traffic-related air pollutants (TRAPs) can be high for road users, including motorbike drivers, cyclists, and pedestrians. However, evaluating the toxicity of fresh traffic emissions from on-road vehicles is challenging since pollution properties can change dynamically within a short distance and time. This study demonstrated a mobile platform equipped with an On-Board Diagnostic II (OBDII) system, a tailor-made portable emission measurement system, and an electrostatic air-liquid interface exposure system with human monocytic THP-1 cells to characterize on-road tailpipe emissions under real driving conditions. High number concentrations up to 106-107 # cm-3 of ultrafine particles (UFPs) were observed for a gasoline engine at the cold-start stage and a diesel engine during particulate filter regeneration. In particular, a substantial fraction of freshly emitted UFPs within the size less than 23 nm were observed and should be cautioned. The potential toxicity of fresh TRAPs was quantified by cell viability, cytotoxicity, oxidative stress, and inflammatory biomarkers. Results show that the decreased cell viability, increased lactate dehydrogenase (LDH) activity, and high oxidative stress induced by the fresh TRAPs were potentially contributed by gaseous pollutants as well as particles, especially driving with the high idling frequency. Moreover, the dominant contributor to the toxicity is different for gasoline's and diesel's TRAPs. Characterizing on-road air pollutant toxicity as well as physicochemical properties using an innovative mobile platform can fill this knowledge gap.


Subject(s)
Air Pollutants , Air Pollution , Humans , Particulate Matter/analysis , Gasoline/analysis , Particle Size , Environmental Monitoring/methods , Vehicle Emissions/toxicity , Vehicle Emissions/analysis , Air Pollutants/toxicity , Air Pollutants/analysis , Air Pollution/analysis , Motor Vehicles
6.
Waste Manag ; 121: 412-421, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33445114

ABSTRACT

Municipal solid waste incineration fly ash (MSWI-FA) has been regulated as a hazardous waste that needs to treat with stabilization, solidification and landfill due to its amount of heavy metals, chlorides, sulfates and dioxin. While the proper treated MSWI-FA can be utilized as pozzolanic material to reduce the usage of Portland cement. The present article aims to develop an integrated wet-extraction and carbonation process for MSWI-FA stabilization, solidification and utilization via the high-gravity technology. A benchtop experiment demonstrated the dechlorination and CO2 sequestration of MSWI-FA and the carbonated product was applied as a supplementary cementitious material (SCM) in the cement mortar. Physical, chemical and thermal characteristics of raw, wet-extracted, and carbonated MSWI-FA were addressed in terms of the mean diameter, micropore area, micropore volume, chemical compositions, mineralogy and morphology. The effects of the liquid-to-solid ratio and high gravity factor were evaluated. Overall, a chloride extraction ratio of 36.35% and a CO2 capture capacity of 258.5 g-CO2 kg-FA-1 were achieved in the batch experiment. The results of water-energy consumption of chloride removal and CO2 fixation provided a novel insight into the future process criterion. In addition, the carbonated FA was found as binder to partially substitute Portland cement due to its large content of calcium carbonate. The workability and mechanical strength of cement mortar with partial substitution of stabilized FA were evaluated to determine the potential FA utilization pathway. Finally, the continuous process tests determined the key operation indexes for future process scale-up.


Subject(s)
Hypergravity , Metals, Heavy , Refuse Disposal , Carbon , Carbon Dioxide , Coal Ash , Incineration , Metals, Heavy/analysis , Particulate Matter , Solid Waste/analysis
7.
J Hazard Mater ; 398: 122959, 2020 11 05.
Article in English | MEDLINE | ID: mdl-32474322

ABSTRACT

Fly ash from municipal solid waste incineration is considered as a hazardous waste, which would raise great threats on environmental safety due to the inherent toxic heavy metals and organic pollutants. In this study, we applied the life cycle assessment to evaluate the thermal plasma vitrification process for stabilization of fly ash from municipal solid waste incineration. We established four scenarios: (i) plasma vitrification, including centralized and off-site plasma treatment, (ii) fuel-based vitrification, (iii) water-washing treatment followed by a rotary kiln, and (iv) conventional solidification and landfill. We found that the environmental impacts, especially toxicity to ecosystem quality and human health, could be significantly reduced by deploying plasma vitrification technology. We also found that centralized plasma vitrification facilities possessing larger treatment capabilities with clean electricity could further reduce the environmental impacts. In contrast, the water-washing treatment exhibited the highest environmental impacts due to the emissions of vaporized heavy metals. Based on the LCA and sensitivity analysis, we confirmed that the thermal plasma vitrification should be considered as an environmentally-friendly solution to sustainable treatment of fly ash from municipal solid waste incineration. Lastly, we provided several perspectives and prospects of plasma vitrification for realizing the sustainable materials management.

8.
Sci Total Environ ; 716: 136998, 2020 May 10.
Article in English | MEDLINE | ID: mdl-32044483

ABSTRACT

Green chemistry principles (GCP) are comprehensively deployed in industrial management, governmental policy, educational practice, and technology development around the world. Circular economy always aims to balance the economic growth, resource sustainability, and environmental protection. This article offers a highlight on issues of significance within GCP and circular economy, and proposes the integrated strategies for GCP implementation from the aspects of governance, industry and education. At first, we developed a new categorizing system for GCP dividing to (i) pollution and accident prevention, (ii) safety and resource sustainability, and (iii) energy and resource sustainability. To assess the GCP practice towards the circular economy, the implementation of international movement of GCP in worldwide policy, especially those of Canada, China, Germany, Japan, South Korea, Sweden, Taiwan, United States and United Kingdom were reviewed. The policy implementation of GCP practices among governance, industries and education was analyzed. To integrate GCP into the circular economy concept, we also proposed five strategies of priority governance direction as follows: (i) establishment of cross-departmental collaboration, (ii) development of cleaner production and green product, (iii) provision of integrated chemical management system, (iv) implementation of green chemistry education program, and (v) construction of a business model. Finally, we discussed the prospects of disciplinary elements including the establishment of redesign-reduction-recovery-recycle-reuse (5R) practices for wastes reclamation, deployment of water-energy-food nexus with GCP to improve the food security and resource sustainability, and implementation of GCP in the green smart industrial park.

9.
Chemosphere ; 238: 124600, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31446277

ABSTRACT

A high-gravity rotating packed bed (HiGee RPB) is very efficient at removing pollution because it exerts a strong high centrifugal and allows tiny droplets to form, which allows the control of gaseous and particulate air pollution. In this study, fine particles that are removed from integrated circuit (IC) chip carbonization process using a RPB are evaluated under different high gravity factors and liquid-to-gas ratios. The greatest number of particles captured per energy consumption is 17.77 mg kWh-1 in a RPB. This allow greater energy efficiency for the HiGee technology prevents an air-energy nexus. The maximum available particle removal efficiency for a RPB is determined using a response surface model (RSM). 99.5% of particles are removed at a high gravity factor of 262 and a liquid-to-gas ratio of 0.24. A semi-theoretical model is developed to determine the particle removal efficiency individually in packing and cavity zones of the RPB. More particles are removed in a cavity zone than in the packing zone as the high gravity factor increases. An empirical model shows that the particle removal efficiency depends on the operating factors. Finally, a comparison analysis of particulate matter treatment in various types of RPB is used to validate the performance in terms of particle removal using high-gravity technology for different industries.


Subject(s)
Environmental Pollution/analysis , Environmental Restoration and Remediation/methods , Particulate Matter/analysis , Carbon , Centrifugation/methods , Gases , Particle Size
10.
J Environ Manage ; 255: 109870, 2020 Feb 01.
Article in English | MEDLINE | ID: mdl-31786437

ABSTRACT

In this study, a high-gravity (HiGee) process incorporating CO2 and NOx reduction from flue gas in a petrochemical plant coupled with petroleum coke fly ash (PCFA) treatment was established. The performance of HiGee was systematically evaluated from the engineering, environmental, economic, and energy aspects (a total of 15 key performance indicators) to establish the air pollution, energy efficiency, waste utilization nexus. The engineering performance was evaluated that lower energy consumption of 78 kWh/t-CO2 can be achieved at a capture capacity of 600 kg CO2/t-PCFA. A net emission reduction of 327.3 kg-CO2/t-PCFA could be determined based on six environmental impact indicators. A cost-benefit analysis was conducted using operating cost, product sale, carbon credit, and savings in air pollution fees to present a better technological selection compared to existing carbon capture and storage plants. The waste heat recovery from the flue gas via the HiGee process could be measured via moisture condensation and attendant elimination of white smog emissions. Retrofitted heat recovery and energy intensity up to 131.8 kJ/t-PCFA and 0.21 kWh/t-PCFA were assessed. Finally, a comprehensive analysis of the HiGee process based on three daily load scenarios of CO2 capture scale were conducted, suggesting an optimal operating condition of the HiGee for generating profitability.


Subject(s)
Air Pollutants , Air Pollution , Carbon Dioxide , Coal Ash , Cost-Benefit Analysis
11.
Environ Pollut ; 252(Pt B): 1464-1475, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31265957

ABSTRACT

In this study, a proposed integrated high-gravity technology for air pollution control, CO2 capture, and alkaline waste utilization was comprehensively evaluated from engineering, environmental, and economic perspectives. After high-gravity technology and coal fly ash (CFA) leaching processes were integrated, flue gas air emissions removal (e.g., sulfate dioxide (SO2), nitrogen oxides (NOx), total suspended particulates (TSP)) and CO2 capture were studied. The CFA, which contains calcium oxide and thus, had high alkalinity, was used as an absorbent in removing air pollution residues. To elucidate the availability of technology for pilot-scale high-gravity processes, the engineering performance, environmental impact, and economic cost were simultaneously investigated. The results indicated that the maximal CO2, SO2, NOx, and TSP removal efficiencies of 96.3 ±â€¯2.1%, 99.4 ±â€¯0.3%, 95.9 ±â€¯2.1%, and 83.4 ±â€¯2.6% were respectively achieved. Moreover, a 112 kWh/t-CO2 energy consumption for a high-gravity process was evaluated, with capture capacities of 510 kg CO2 and 0.468 kg NOx per day. In addition, the fresh, water-treated, acid-treated, and carbonated CFA was utilized as supplementary cementitious materials in the blended cement mortar. The workability, durability, and compressive strength of 5% carbonated CFA blended into cement mortar showed superior performance, i.e., 53 MPa ±2.5 MPa at 56 days. Furthermore, a higher engineering performance with a lower environmental impact and lower economic cost could potentially be evaluated to determine the best available operating condition of the high-gravity process for air pollution reduction, CO2 capture, and waste utilization.


Subject(s)
Air Pollutants/chemistry , Air Pollution/prevention & control , Calcium Compounds/chemistry , Carbon Dioxide/chemistry , Environmental Restoration and Remediation/methods , Gravitation , Oxides/chemistry , Carbonates/chemistry , Coal/analysis , Coal Ash/chemistry , Nitrogen Oxides
12.
J Hazard Mater ; 260: 937-46, 2013 Sep 15.
Article in English | MEDLINE | ID: mdl-23892160

ABSTRACT

In this study, direct and indirect carbonation of basic oxygen furnace slag (BOFS) coupled with cold-rolling wastewater (CRW) was carried out via a rotating packed bed (RPB). The solid products were qualitatively characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD) and quantitatively analyzed with thermogravimetric analysis (TGA). The leachate was analyzed with inductively coupled plasma-optical emission spectroscopy (ICP-OES). The results indicate that the maximum achievable carbonation conversion (MACC) of BOFS was 90.7%, corresponding to a capture capacity of 0.277 g CO2/g of BOFS, by direct carbonation with CRW under a rotation speed of 750 rpm at 30 °C for 20 min. In addition, CO2 mass balance among the gas, liquid, and solid phases within an RPB was well-developed, with an error less than 10%, to confirm the actual CO2 capture capacity of BOFS with precision and accuracy. Furthermore, a reaction kinetic model based on mass balance was established to determine the reaction rate constant for various liquid agents (CRW and pure water). It was concluded that co-utilization of alkaline wastes including BOFS and CRW via the RPB is a novel approach for both enhancing CO2 capture capacity and reducing the environmental impacts of alkaline wastes.


Subject(s)
Carbon Dioxide/chemistry , Oxygen/chemistry , Water Pollutants, Chemical/analysis , Water Purification/methods , Air Pollutants , Calcium Carbonate/chemistry , Carbon/chemistry , Construction Materials , Equipment Design , Hydrogen-Ion Concentration , Industrial Waste , Ions , Kinetics , Microscopy, Electron, Scanning , Models, Chemical , Steel , Temperature , Thermogravimetry , Time Factors , Wastewater , Water Pollutants, Chemical/chemistry , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...