Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
Add more filters










Publication year range
1.
Handb Exp Pharmacol ; 2022 Jul 07.
Article in English | MEDLINE | ID: mdl-35792944

ABSTRACT

The transmembrane protein 16 (TMEM16) family consists of Ca2+-activated chloride channels and phospholipid scramblases. Ten mammalian TMEM16 proteins, TMEM16A-K (with no TMEM16I), and several non-mammalian TMEM16 proteins, such as afTMEM16 and nhTMEM16, have been discovered. All known TMEM16 proteins are homodimeric proteins containing two subunits. Each subunit consists of ten transmembrane helices with Ca2+-binding sites and a single ion-permeation/phospholipid transport pathway. The ion-permeation pathway and the phospholipid transport pathway of TMEM16 proteins have a wide intracellular vestibule, a narrow neck, and a smaller extracellular vestibule. Interestingly, the lining wall of the ion-permeation/phospholipid transport pathway may be formed, at least partially, by membrane phospholipids, though the degree of pore-wall forming by phospholipids likely varies among TMEM16 proteins. Thus, the biophysical properties and activation mechanisms of TMEM16 proteins could differ from each other accordingly. Here we review the current understanding of the structure and function of TMEM16 molecules.

2.
Handb Exp Pharmacol ; 2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35768555

ABSTRACT

The CLC family encompasses two functional categories of transmembrane proteins: chloride conducting channels and proton-chloride antiporters. All members in this chloride channel/transporter family consist of two identical protein subunits, and each subunit forms an independent ion-transport pathway, a structural architecture known as "double barrel." These CLC proteins serve biological functions ranging from membrane excitability and cell volume regulation to acidification of endosomes. Despite their ubiquitous expression, physiological significance, and resolved molecular structures of some of the family members, the mechanisms governing these molecules' biophysical functions are still not completely settled. However, a series of functional and structural studies have brought insights into interesting questions related to these proteins. This chapter explores the functional peculiarities underlying CLC channels aided by information observed from the chloride-proton antiporters in the CLC family. The overall structural features of these CLC proteins will be presented, and the biophysical functions will be addressed. Finally, the mechanism of pharmacological agents that interact with CLC channels will also be discussed.

3.
Tzu Chi Med J ; 33(4): 323-331, 2021.
Article in English | MEDLINE | ID: mdl-34760626

ABSTRACT

Catecholaminergic polymorphic ventricular tachycardia (CPVT), a rare autosomal dominant or recessive disease, usually results in syncope or sudden cardiac death. Most CPVT patients do not show abnormal cardiac structure and electrocardiogram features and symptoms, usually onset during adrenergically mediated physiological conditions. CPVT tends to occur at a younger age and is not easy to be diagnosed and managed. The main cause of CPVT is associated with mishandling Ca2+ in cardiomyocytes. Intracellular Ca2+ is strictly controlled by a protein located in the sarcoplasm reticulum (SR), such as ryanodine receptor, histidine-rich Ca2+-binding protein, triadin, and junctin. Mutation in these proteins results in misfolding or malfunction of these proteins, thereby affecting their Ca2+-binding affinity, and subsequently disturbs Ca2+ homeostasis during excitation-contraction coupling (E-C coupling). Furthermore, transient disturbance of Ca2+ homeostasis increases membrane potential and causes Ca2+ store overload-induced Ca2+ release, which in turn leads to delayed after depolarization and arrhythmia. Previous studies have focused on the interaction between ryanodine receptors and protein kinase or phosphatase in the cytosol. However, recent studies showed the regulation signaling for ryanodine receptor not only from the cytosol but also within the SR. The changing of Ca2+ concentration is critical for protein interaction inside the SR which changes protein conformation to regulate the open probability of ryanodine receptors. Thus, it influences the threshold of Ca2+ released from the SR, making it easier to release Ca2+ during E-C coupling. In this review, we briefly discuss how Ca2+ handling protein variations affect the Ca2+ handling in CPVT.

4.
Int J Mol Sci ; 22(11)2021 May 30.
Article in English | MEDLINE | ID: mdl-34070744

ABSTRACT

The ClC-2 channel plays a critical role in maintaining ion homeostasis in the brain and the testis. Loss-of-function mutations in the ClC-2-encoding human CLCN2 gene are linked to the white matter disease leukodystrophy. Clcn2-deficient mice display neuronal myelin vacuolation and testicular degeneration. Leukodystrophy-causing ClC-2 mutant channels are associated with anomalous proteostasis manifesting enhanced endoplasmic reticulum (ER)-associated degradation. The molecular nature of the ER quality control system for ClC-2 protein remains elusive. In mouse testicular tissues and Leydig cells, we demonstrated that endogenous ClC-2 co-existed in the same protein complex with the molecular chaperones heat shock protein 90ß (Hsp90ß) and heat shock cognate protein (Hsc70), as well as the associated co-chaperones Hsp70/Hsp90 organizing protein (HOP), activator of Hsp90 ATPase homolog 1 (Aha1), and FK506-binding protein 8 (FKBP8). Further biochemical analyses revealed that the Hsp90ß-Hsc70 chaperone/co-chaperone system promoted mouse and human ClC-2 protein biogenesis. FKBP8 additionally facilitated membrane trafficking of ClC-2 channels. Interestingly, treatment with the Hsp90-targeting small molecule 17-allylamino-17-demethoxygeldanamycin (17-AAG) substantially boosted ClC-2 protein expression. Also, 17-AAG effectively increased both total and cell surface protein levels of leukodystrophy-causing loss-of-function ClC-2 mutant channels. Our findings highlight the therapeutic potential of 17-AAG in correcting anomalous ClC-2 proteostasis associated with leukodystrophy.


Subject(s)
Brain/metabolism , Chloride Channels/genetics , Leydig Cells/metabolism , Neurons/metabolism , Pelizaeus-Merzbacher Disease/genetics , Proteostasis/genetics , Animals , Benzoquinones/pharmacology , Brain/drug effects , Brain/pathology , CHO Cells , CLC-2 Chloride Channels , Chloride Channels/deficiency , Cricetulus , Disease Models, Animal , Endoplasmic Reticulum-Associated Degradation/drug effects , Gene Expression Regulation , HEK293 Cells , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/genetics , HSP90 Heat-Shock Proteins/metabolism , Humans , Lactams, Macrocyclic/pharmacology , Leydig Cells/drug effects , Leydig Cells/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Neurons/drug effects , Neurons/pathology , Pelizaeus-Merzbacher Disease/drug therapy , Pelizaeus-Merzbacher Disease/metabolism , Pelizaeus-Merzbacher Disease/pathology , Protein Isoforms/deficiency , Protein Isoforms/genetics , Signal Transduction , Tacrolimus Binding Proteins/genetics , Tacrolimus Binding Proteins/metabolism
5.
Int J Mol Sci ; 22(4)2021 Feb 23.
Article in English | MEDLINE | ID: mdl-33672260

ABSTRACT

Intracellular divalent cations control the molecular function of transmembrane protein 16 (TMEM16) family members. Both anion channels (such as TMEM16A) and phospholipid scramblases (such as TMEM16F) in this family are activated by intracellular Ca2+ in the low µM range. In addition, intracellular Ca2+ or Co2+ at mM concentrations have been shown to further potentiate the saturated Ca2+-activated current of TMEM16A. In this study, we found that all alkaline earth divalent cations in mM concentrations can generate similar potentiation effects in TMEM16A when applied intracellularly, and that manipulations thought to deplete membrane phospholipids weaken the effect. In comparison, mM concentrations of divalent cations minimally potentiate the current of TMEM16F but significantly change its cation/anion selectivity. We suggest that divalent cations may increase local concentrations of permeant ions via a change in pore electrostatic potential, possibly acting through phospholipid head groups in or near the pore. Monovalent cations appear to exert a similar effect, although with a much lower affinity. Our findings resolve controversies regarding the ion selectivity of TMEM16 proteins. The physiological role of this mechanism, however, remains elusive because of the nearly constant high cation concentrations in cytosols.


Subject(s)
Anoctamins/metabolism , Cations, Divalent/metabolism , Anoctamin-1/chemistry , Anoctamin-1/genetics , Anoctamin-1/metabolism , Anoctamins/chemistry , Anoctamins/genetics , Calcium/metabolism , Cations, Divalent/pharmacology , Cobalt/metabolism , Electrophysiology/methods , HEK293 Cells , Humans , Magnesium/metabolism , Mannitol/metabolism , Mannitol/pharmacology , Mutation , Phosphatidylinositol 4,5-Diphosphate/metabolism , Phospholipids/metabolism , Polylysine/pharmacology
6.
PLoS One ; 15(12): e0240704, 2020.
Article in English | MEDLINE | ID: mdl-33362212

ABSTRACT

CLC-0, a prototype Cl- channel in the CLC family, employs two gating mechanisms that control its ion-permeation pore: fast gating and slow gating. The negatively-charged sidechain of a pore glutamate residue, E166, is known to be the fast gate, and the swinging of this sidechain opens or closes the pore of CLC-0 on the millisecond time scale. The other gating mechanism, slow gating, operates with much slower kinetics in the range of seconds to tens or even hundreds of seconds, and it is thought to involve still-unknown conformational rearrangements. Here, we find that low intracellular pH (pHi) facilitates the closure of the CLC-0's slow gate, thus generating current inhibition. The rate of low pHi-induced current inhibition increases with intracellular H+ concentration ([H+]i)-the time constants of current inhibition by low pHi = 4.5, 5.5 and 6 are roughly 0.1, 1 and 10 sec, respectively, at room temperature. In comparison, the time constant of the slow gate closure at pHi = 7.4 at room temperature is hundreds of seconds. The inhibition by low pHi is significantly less prominent in mutants favoring the slow-gate open state (such as C212S and Y512A), further supporting the fact that intracellular H+ enhances the slow-gate closure in CLC-0. A fast inhibition by low pHi causes an apparent inverted voltage-dependent activation in the wild-type CLC-0, a behavior similar to those in some channel mutants such as V490W in which only membrane hyperpolarization can open the channel. Interestingly, when V490W mutation is constructed in the background of C212S or Y512A mutation, the inverted voltage-dependent activation disappears. We propose that the slow kinetics of CLC-0's slow-gate closure may be due to low [H+]i rather than due to the proposed large conformational change of the channel protein. Our results also suggest that the inverted voltage-dependent opening observed in some mutant channels may result from fast closure of the slow gate by the mutations.


Subject(s)
Chloride Channels/metabolism , Chlorides/metabolism , Ion Channel Gating , Protons , Chloride Channels/genetics , Glutamic Acid/genetics , HEK293 Cells , Humans , Hydrogen-Ion Concentration , Kinetics , Membrane Potentials , Mutagenesis, Site-Directed , Mutation , Patch-Clamp Techniques , Structural Homology, Protein
7.
Cells ; 9(6)2020 05 26.
Article in English | MEDLINE | ID: mdl-32466489

ABSTRACT

Voltage-gated ClC-2 channels are essential for chloride homeostasis. Complete knockout of mouse ClC-2 leads to testicular degeneration and neuronal myelin vacuolation. Gain-of-function and loss-of-function mutations in the ClC-2-encoding human CLCN2 gene are linked to the genetic diseases aldosteronism and leukodystrophy, respectively. The protein homeostasis (proteostasis) mechanism of ClC-2 is currently unclear. Here, we aimed to identify the molecular mechanism of endoplasmic reticulum-associated degradation of ClC-2, and to explore the pathophysiological significance of disease-associated anomalous ClC-2 proteostasis. In both heterologous expression system and native neuronal and testicular cells, ClC-2 is subject to significant regulation by cullin-RING E3 ligase-mediated polyubiquitination and proteasomal degradation. The cullin 4 (CUL4)-damage-specific DNA binding protein 1 (DDB1)-cereblon (CRBN) E3 ubiquitin ligase co-exists in the same complex with and promotes the degradation of ClC-2 channels. The CRBN-targeting immunomodulatory drug lenalidomide and the cullin E3 ligase inhibitor MLN4924 promotes and attenuates, respectively, proteasomal degradation of ClC-2. Analyses of disease-related ClC-2 mutants reveal that aldosteronism and leukodystrophy are associated with opposite alterations in ClC-2 proteostasis. Modifying CUL4 E3 ligase activity with lenalidomide and MLN4924 ameliorates disease-associated ClC-2 proteostasis abnormality. Our results highlight the significant role and therapeutic potential of CUL4 E3 ubiquitin ligase in regulating ClC-2 proteostasis.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Brain Diseases/metabolism , Chloride Channels/metabolism , Cullin Proteins/metabolism , DNA-Binding Proteins/metabolism , Hyperaldosteronism/metabolism , Proteostasis , Ubiquitin-Protein Ligases/metabolism , Animals , Brain Diseases/pathology , CLC-2 Chloride Channels , HEK293 Cells , Humans , Hyperaldosteronism/pathology , Mice, Inbred C57BL , Models, Biological , Polyubiquitin/metabolism , Proteolysis , Rats, Wistar , Substrate Specificity , Ubiquitination
8.
PLoS One ; 15(4): e0231812, 2020.
Article in English | MEDLINE | ID: mdl-32302365

ABSTRACT

TMEM16A, a Ca2+-sensitive Cl- channel, plays key roles in many physiological functions related to Cl- transport across lipid membranes. Activation of this channel is mediated via binding intracellular Ca2+ to the channel with a relatively high apparent affinity, roughly in the sub-µM to low µM concentration range. Recently available high-resolution structures of TMEM16 molecules reveal that the high-affinity Ca2+ activation sites are formed by several acidic amino acids, using their negatively charged sidechain carboxylates to coordinate the bound Ca2+. In this study, we examine the interaction of TMEM16A with a divalent cation, Co2+, which by itself cannot activate current in TMEM16A. This divalent cation, however, has two effects when applied intracellularly. It inhibits the Ca2+-induced TMEM16A current by competing with Ca2+ for the aforementioned high-affinity activation sites. In addition, Co2+ also potentiates the Ca2+-induced current with a low affinity. This potentiation effect requires high concentration (mM) of Co2+, similar to our previous findings that high concentrations (mM) of intracellular Ca2+ ([Ca2+]i) can induce more TMEM16A current after the Ca2+-activation sites are saturated by tens of µM [Ca2+]i. The degrees of potentiation by Co2+ and Ca2+ also roughly correlate with each other. Interestingly, mutating a pore residue of TMEM16A, Y589, alters the degree of potentiation in that the smaller the sidechain of the replaced residue, the larger the potentiation induced by divalent cations. We suggest that the Co2+ potentiation and the Ca2+ potentiation share a similar mechanism by increasing Cl- flux through the channel pore, perhaps due to an increase of positive pore potential after the binding of divalent cations to phospholipids in the pore. A smaller sidechain of a pore residue may allow the pore to accommodate more phospholipids, thus enhancing the current potentiation caused by high concentrations of divalent cations.


Subject(s)
Anoctamins/agonists , Anoctamins/antagonists & inhibitors , Cobalt/pharmacology , Ion Channel Gating/drug effects , Anoctamins/metabolism , Calcium , Chloride Channel Agonists/pharmacology , HEK293 Cells , Humans , Hydrophobic and Hydrophilic Interactions , Ions , Kinetics , Mutant Proteins/metabolism
9.
Front Neurol ; 11: 76, 2020.
Article in English | MEDLINE | ID: mdl-32117034

ABSTRACT

The voltage-dependent ClC-1 chloride channel, whose open probability increases with membrane potential depolarization, belongs to the superfamily of CLC channels/transporters. ClC-1 is almost exclusively expressed in skeletal muscles and is essential for stabilizing the excitability of muscle membranes. Elucidation of the molecular structures of human ClC-1 and several CLC homologs provides important insight to the gating and ion permeation mechanisms of this chloride channel. Mutations in the human CLCN1 gene, which encodes the ClC-1 channel, are associated with a hereditary skeletal muscle disease, myotonia congenita. Most disease-causing CLCN1 mutations lead to loss-of-function phenotypes in the ClC-1 channel and thus increase membrane excitability in skeletal muscles, consequently manifesting as delayed relaxations following voluntary muscle contractions in myotonic subjects. The inheritance pattern of myotonia congenita can be autosomal dominant (Thomsen type) or recessive (Becker type). To date over 200 myotonia-associated ClC-1 mutations have been identified, which are scattered throughout the entire protein sequence. The dominant inheritance pattern of some myotonia mutations may be explained by a dominant-negative effect on ClC-1 channel gating. For many other myotonia mutations, however, no clear relationship can be established between the inheritance pattern and the location of the mutation in the ClC-1 protein. Emerging evidence indicates that the effects of some mutations may entail impaired ClC-1 protein homeostasis (proteostasis). Proteostasis of membrane proteins comprises of biogenesis at the endoplasmic reticulum (ER), trafficking to the surface membrane, and protein turn-over at the plasma membrane. Maintenance of proteostasis requires the coordination of a wide variety of different molecular chaperones and protein quality control factors. A number of regulatory molecules have recently been shown to contribute to post-translational modifications of ClC-1 and play critical roles in the ER quality control, membrane trafficking, and peripheral quality control of this chloride channel. Further illumination of the mechanisms of ClC-1 proteostasis network will enhance our understanding of the molecular pathophysiology of myotonia congenita, and may also bring to light novel therapeutic targets for skeletal muscle dysfunction caused by myotonia and other pathological conditions.

10.
iScience ; 19: 25-38, 2019 Sep 27.
Article in English | MEDLINE | ID: mdl-31349189

ABSTRACT

How chemical signals are integrated at the peripheral sensory system of insects is still an enigma. Here we show that when coexpressed with Orco in Xenopus oocytes, an odorant receptor from the southern house mosquito, CquiOR32, generated inward (regular) currents when challenged with cyclohexanone and methyl salicylate, whereas eucalyptol and fenchone elicited inhibitory (upward) currents. Responses of CquiOR32-CquiOrco-expressing oocytes to odorants were reduced in a dose-dependent fashion by coapplication of inhibitors. This intrareceptor inhibition was also manifested in vivo in fruit flies expressing the mosquito receptor CquiOR32, as well in neurons on the antennae of the southern house mosquito. Likewise, an orthologue from the yellow fever mosquito, AaegOR71, showed intrareceptor inhibition in the Xenopus oocyte recording system and corresponding inhibition in antennal neurons. Inhibition was also manifested in mosquito behavior. Blood-seeking females were repelled by methyl salicylate, but repellence was significantly reduced when methyl salicylate was coapplied with eucalyptol.

11.
J Gen Physiol ; 151(4): 518-531, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30670476

ABSTRACT

Two TMEM16 family members, TMEM16A and TMEM16F, have different ion transport properties. Upon activation by intracellular Ca2+, TMEM16A-a Ca2+-activated Cl- channel-is more selective for anions than cations, whereas TMEM16F-a phospholipid scramblase-appears to transport both cations and anions. Under saturating Ca2+ conditions, the current-voltage (I-V) relationships of these two proteins also differ; the I-V curve of TMEM16A is linear, while that of TMEM16F is outwardly rectifying. We previously found that mutating a positively charged lysine residue (K584) in the ion transport pathway to glutamine converted the linear I-V curve of TMEM16A to an outwardly rectifying curve. Interestingly, the corresponding residue in the outwardly rectifying TMEM16F is also a glutamine (Q559). Here, we examine the ion transport functions of TMEM16 molecules and compare the roles of K584 of TMEM16A and Q559 of TMEM16F in controlling the rectification of their respective I-V curves. We find that rectification of TMEM16A is regulated electrostatically by the side-chain charge on the residue at position 584, whereas the charge on residue 559 in TMEM16F has little effect. Unexpectedly, mutation of Q559 to aromatic amino acid residues significantly alters outward rectification in TMEM16F. These same mutants show reduced Ca2+-induced current rundown (or desensitization) compared with wild-type TMEM16F. A mutant that removes the rundown of TMEM16F could facilitate the study of ion transport mechanisms in this phospholipid scramblase in the same way that a CLC-0 mutant in which inactivation (or closure of the slow gate) is suppressed was used in our previous studies.


Subject(s)
Anoctamin-1/chemistry , Anoctamin-1/physiology , Phospholipid Transfer Proteins/metabolism , Amino Acid Sequence , Amino Acid Substitution , Animals , Electrophysiological Phenomena , Ion Transport , Mice , Mutation , Phospholipid Transfer Proteins/genetics , Protein Isoforms
12.
Int J Mol Sci ; 19(12)2018 Nov 28.
Article in English | MEDLINE | ID: mdl-30487393

ABSTRACT

Mutations in the skeletal muscle-specific CLC-1 chloride channel are associated with the human hereditary disease myotonia congenita. The molecular pathophysiology underlying some of the disease-causing mutations can be ascribed to defective human CLC-1 protein biosynthesis. CLC-1 protein folding is assisted by several molecular chaperones and co-chaperones, including FK506-binding protein 8 (FKBP8). FKBP8 is generally considered an endoplasmic reticulum- and mitochondrion-resident membrane protein, but is not thought to contribute to protein quality control at the cell surface. Herein, we aim to test the hypothesis that FKBP8 may regulate CLC-1 protein at the plasma membrane. Surface biotinylation and subcellular fractionation analyses reveal that a portion of FKBP8 is present at the plasma membrane, and that co-expression with CLC-1 enhances surface localization of FKBP8. Immunoblotting analyses of plasma membrane proteins purified from skeletal muscle further confirm surface localization of FKBP8. Importantly, FKBP8 promotes CLC-1 protein stability at the plasma membrane. Together, our data underscore the importance of FKBP8 in the peripheral quality control of CLC-1 channel.


Subject(s)
Cell Membrane/metabolism , Chloride Channels/metabolism , Tacrolimus Binding Proteins/metabolism , Golgi Apparatus/metabolism , HEK293 Cells , Humans , Membrane Proteins/metabolism , Muscle, Skeletal/metabolism , Protein Stability
13.
Sci Rep ; 7(1): 169, 2017 03 13.
Article in English | MEDLINE | ID: mdl-28279024

ABSTRACT

In Caenorhabditis elegans, the AWC neurons are thought to deploy a cGMP signaling cascade in the detection of and response to AWC sensed odors. Prolonged exposure to an AWC sensed odor in the absence of food leads to reversible decreases in the animal's attraction to that odor. This adaptation exhibits two stages referred to as short-term and long-term adaptation. Previously, the protein kinase G (PKG), EGL-4/PKG-1, was shown necessary for both stages of adaptation and phosphorylation of its target, the beta-type cyclic nucleotide gated (CNG) channel subunit, TAX-2, was implicated in the short term stage. Here we uncover a novel role for the CNG channel subunit, CNG-3, in short term adaptation. We demonstrate that CNG-3 is required in the AWC for adaptation to short (thirty minute) exposures of odor, and contains a candidate PKG phosphorylation site required to tune odor sensitivity. We also provide in vivo data suggesting that CNG-3 forms a complex with both TAX-2 and TAX-4 CNG channel subunits in AWC. Finally, we examine the physiology of different CNG channel subunit combinations.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/physiology , Cyclic Nucleotide-Gated Cation Channels/metabolism , Olfactory Nerve/cytology , Smell , Adaptation, Physiological , Animals , Binding Sites , Caenorhabditis elegans Proteins/chemistry , Cells, Cultured , Cyclic GMP-Dependent Protein Kinases/metabolism , Cyclic Nucleotide-Gated Cation Channels/chemistry , HEK293 Cells , Humans , Ion Channels/metabolism , Neuronal Plasticity , Olfactory Nerve/metabolism , Phosphorylation
14.
J Gen Physiol ; 148(5): 393-404, 2016 11.
Article in English | MEDLINE | ID: mdl-27799319

ABSTRACT

The TMEM16 family encompasses Ca2+-activated Cl- channels (CaCCs) and lipid scramblases. These proteins are formed by two identical subunits, as confirmed by the recently solved crystal structure of a TMEM16 lipid scramblase. However, the high-resolution structure did not provide definitive information regarding the pore architecture of the TMEM16 channels. In this study, we express TMEM16A channels constituting two covalently linked subunits with different Ca2+ affinities. The dose-response curve of the heterodimer appears to be a weighted sum of two dose-response curves-one corresponding to the high-affinity subunit and the other to the low-affinity subunit. However, fluorescence resonance energy transfer experiments suggest that the covalently linked heterodimeric proteins fold and assemble as one molecule. Together these results suggest that activation of the two TMEM16A subunits likely activate independently of each other. The Ca2+ activation curve for the heterodimer at a low Ca2+ concentration range ([Ca2+] < 5 µM) is similar to that of the wild-type channel-the Hill coefficients in both cases are significantly greater than one. This suggests that Ca2+ binding to one subunit of TMEM16A is sufficient to activate the channel and that each subunit contains more than one Ca2+-binding site. We also take advantage of the I-V curve rectification that results from mutation of a pore residue to address the pore architecture of the channel. By introducing the pore mutation and the mutation that alters Ca2+ affinity in the same or different subunits, we demonstrate that activation of different subunits appears to be associated with the opening of different pores. These results suggest that the TMEM16A CaCC may also adopt a "double-barrel" pore architecture, similar to that found in CLC channels and transporters.


Subject(s)
Chloride Channels/metabolism , Ion Channel Gating , Animals , Anoctamin-1 , Binding Sites , Calcium/metabolism , Chloride Channels/chemistry , Chloride Channels/genetics , HEK293 Cells , Humans , Mice , Mutation , Protein Binding , Protein Subunits/chemistry , Protein Subunits/genetics , Protein Subunits/metabolism
15.
Sci Rep ; 6: 32444, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27580824

ABSTRACT

Mutations in human CLC-1 chloride channel are associated with the skeletal muscle disorder myotonia congenita. The disease-causing mutant A531V manifests enhanced proteasomal degradation of CLC-1. We recently found that CLC-1 degradation is mediated by cullin 4 ubiquitin ligase complex. It is currently unclear how quality control and protein degradation systems coordinate with each other to process the biosynthesis of CLC-1. Herein we aim to ascertain the molecular nature of the protein quality control system for CLC-1. We identified three CLC-1-interacting proteins that are well-known heat shock protein 90 (Hsp90)-associated co-chaperones: FK506-binding protein 8 (FKBP8), activator of Hsp90 ATPase homolog 1 (Aha1), and Hsp70/Hsp90 organizing protein (HOP). These co-chaperones promote both the protein level and the functional expression of CLC-1 wild-type and A531V mutant. CLC-1 biosynthesis is also facilitated by the molecular chaperones Hsc70 and Hsp90ß. The protein stability of CLC-1 is notably increased by FKBP8 and the Hsp90ß inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG) that substantially suppresses cullin 4 expression. We further confirmed that cullin 4 may interact with Hsp90ß and FKBP8. Our data are consistent with the idea that FKBP8 and Hsp90ß play an essential role in the late phase of CLC-1 quality control by dynamically coordinating protein folding and degradation.


Subject(s)
Chloride Channels/genetics , HSP90 Heat-Shock Proteins/genetics , Homeodomain Proteins/genetics , Molecular Chaperones/genetics , Tacrolimus Binding Proteins/genetics , Tumor Suppressor Proteins/genetics , Chloride Channels/antagonists & inhibitors , Chloride Channels/metabolism , Cullin Proteins/genetics , Cullin Proteins/metabolism , Cysteine Proteinase Inhibitors/pharmacology , Gene Expression Regulation , Genetic Vectors/chemistry , Genetic Vectors/metabolism , HEK293 Cells , HSP90 Heat-Shock Proteins/metabolism , Homeodomain Proteins/metabolism , Humans , Lentivirus/genetics , Lentivirus/metabolism , Leupeptins/pharmacology , Models, Biological , Molecular Chaperones/metabolism , Myotonia Congenita/genetics , Myotonia Congenita/metabolism , Myotonia Congenita/pathology , Patch-Clamp Techniques , Proteasome Endopeptidase Complex/drug effects , Proteasome Endopeptidase Complex/metabolism , Proteolysis , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Signal Transduction , Tacrolimus Binding Proteins/metabolism , Transfection , Tumor Suppressor Proteins/metabolism , Ubiquitination/drug effects
16.
J Gen Physiol ; 147(4): 291-308, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27022190

ABSTRACT

Electrical membrane properties of skeletal muscle fibers have been thoroughly studied over the last five to six decades. This has shown that muscle fibers from a wide range of species, including fish, amphibians, reptiles, birds, and mammals, are all characterized by high resting membrane permeability for Cl(-) ions. Thus, in resting human muscle, ClC-1 Cl(-) ion channels account for ∼80% of the membrane conductance, and because active Cl(-) transport is limited in muscle fibers, the equilibrium potential for Cl(-) lies close to the resting membrane potential. These conditions-high membrane conductance and passive distribution-enable ClC-1 to conduct membrane current that inhibits muscle excitability. This depressing effect of ClC-1 current on muscle excitability has mostly been associated with skeletal muscle hyperexcitability in myotonia congenita, which arises from loss-of-function mutations in the CLCN1 gene. However, given that ClC-1 must be drastically inhibited (∼80%) before myotonia develops, more recent studies have explored whether acute and more subtle ClC-1 regulation contributes to controlling the excitability of working muscle. Methods were developed to measure ClC-1 function with subsecond temporal resolution in action potential firing muscle fibers. These and other techniques have revealed that ClC-1 function is controlled by multiple cellular signals during muscle activity. Thus, onset of muscle activity triggers ClC-1 inhibition via protein kinase C, intracellular acidosis, and lactate ions. This inhibition is important for preserving excitability of working muscle in the face of activity-induced elevation of extracellular K(+) and accumulating inactivation of voltage-gated sodium channels. Furthermore, during prolonged activity, a marked ClC-1 activation can develop that compromises muscle excitability. Data from ClC-1 expression systems suggest that this ClC-1 activation may arise from loss of regulation by adenosine nucleotides and/or oxidation. The present review summarizes the current knowledge of the physiological factors that control ClC-1 function in active muscle.


Subject(s)
Chloride Channels/metabolism , Muscle, Skeletal/metabolism , Myotonia Congenita/metabolism , Animals , Chloride Channels/genetics , Humans , Membrane Potentials , Muscle, Skeletal/physiology , Muscle, Skeletal/physiopathology , Myotonia Congenita/genetics , Myotonia Congenita/physiopathology
17.
J Physiol ; 594(12): 3391-406, 2016 06 15.
Article in English | MEDLINE | ID: mdl-26857341

ABSTRACT

KEY POINTS: Regulation of ion channel function during repeated firing of action potentials is commonly observed in excitable cells. Recently it was shown that muscle activity is associated with rapid, protein kinase C (PKC)-dependent ClC-1 Cl(-) channel inhibition in rodent muscle. While this PKC-dependent ClC-1 inhibition during muscle activity was shown to be important for the maintenance of contractile endurance in rat muscle it is unknown whether a similar regulation exists in human muscle. Also, the molecular mechanisms underlying the observed PKC-dependent ClC-1 inhibition are unclear. Here we present the first demonstration of ClC-1 inhibition in active human muscle fibres, and we determine the changes in ClC-1 gating that underlie the PKC-dependent ClC-1 inhibition in active muscle using human ClC-1 expressed in Xenopus oocytes. This activity-induced ClC-1 inhibition is suggested to represent a mechanism by which human muscle fibres maintain their excitability during sustained activity. ABSTRACT: Repeated firing of action potentials (APs) is known to trigger rapid, protein kinase C (PKC)-dependent inhibition of ClC-1 Cl(-) ion channels in rodent muscle and this inhibition is important for contractile endurance. It is currently unknown whether similar regulation exists in human muscle, and the molecular mechanisms underlying PKC-dependent ClC-1 inhibition are unclear. This study first determined whether PKC-dependent ClC-1 inhibition exists in active human muscle, and second, it clarified how PKC alters the gating of human ClC-1 expressed in Xenopus oocytes. In human abdominal and intercostal muscles, repeated AP firing was associated with 30-60% reduction of ClC-1 function, which could be completely prevented by PKC inhibition (1 µm GF109203X). The role of the PKC-dependent ClC-1 inhibition was evaluated from rheobase currents before and after firing 1000 APs: while rheobase current was well maintained after activity under control conditions it rose dramatically if PKC-dependent ClC-1 inhibition had been prevented with the inhibitor. This demonstrates that the ClC-1 inhibition is important for maintenance of excitability in active human muscle fibres. Oocyte experiments showed that PKC activation lowered the overall open probability of ClC-1 in the voltage range relevant for AP initiation in muscle fibres. More detailed analysis of this reduction showed that PKC mostly affected the slow gate of ClC-1. Indeed, there was no effect of PKC activation in C277S mutated ClC-1 in which the slow gate is effectively locked open. It is concluded that regulation of excitability of active human muscle fibres relies on PKC-dependent ClC-1 inhibition via a gating mechanism.


Subject(s)
Abdominal Muscles/physiology , Chloride Channels/physiology , Intercostal Muscles/physiology , Ion Channel Gating/physiology , Protein Kinase C/physiology , Action Potentials , Animals , Chloride Channels/genetics , Female , Humans , Oocytes , Xenopus laevis
18.
J Gen Physiol ; 146(6): 495-508, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26621774

ABSTRACT

Members of the CLC family of Cl(-) channels and transporters are homodimeric integral membrane proteins. Two gating mechanisms control the opening and closing of Cl(-) channels in this family: fast gating, which regulates opening and closing of the individual pores in each subunit, and slow (or common) gating, which simultaneously controls gating of both subunits. Here, we found that intracellularly applied Cd(2+) reduces the current of CLC-0 because of its inhibition on the slow gating. We identified CLC-0 residues C229 and H231, located at the intracellular end of the transmembrane domain near the dimer interface, as the Cd(2+)-coordinating residues. The inhibition of the current of CLC-0 by Cd(2+) was greatly enhanced by mutation of I225W and V490W at the dimer interface. Biochemical experiments revealed that formation of a disulfide bond within this Cd(2+)-binding site is also affected by mutation of I225W and V490W, indicating that these two mutations alter the structure of the Cd(2+)-binding site. Kinetic studies showed that Cd(2+) inhibition appears to be state dependent, suggesting that structural rearrangements may occur in the CLC dimer interface during Cd(2+) modulation. Mutations of I290 and I556 of CLC-1, which correspond to I225 and V490 of CLC-0, respectively, have been shown previously to cause malfunction of CLC-1 Cl(-) channel by altering the common gating. Our experimental results suggest that mutations of the corresponding residues in CLC-0 change the subunit interaction and alter the slow gating of CLC-0. The effect of these mutations on modulations of slow gating of CLC channels by intracellular Cd(2+) likely depends on their alteration of subunit interactions.


Subject(s)
Cadmium/pharmacology , Chloride Channels/metabolism , Ion Channel Gating/drug effects , Amino Acid Sequence , Binding Sites , Chloride Channels/chemistry , Chloride Channels/genetics , HEK293 Cells , Humans , Molecular Sequence Data , Mutation , Protein Binding
19.
Sci Rep ; 5: 10667, 2015 May 29.
Article in English | MEDLINE | ID: mdl-26021757

ABSTRACT

Voltage-gated CLC-1 chloride channels play a critical role in controlling the membrane excitability of skeletal muscles. Mutations in human CLC-1 channels have been linked to the hereditary muscle disorder myotonia congenita. We have previously demonstrated that disease-associated CLC-1 A531V mutant protein may fail to pass the endoplasmic reticulum quality control system and display enhanced protein degradation as well as defective membrane trafficking. Currently the molecular basis of protein degradation for CLC-1 channels is virtually unknown. Here we aim to identify the E3 ubiquitin ligase of CLC-1 channels. The protein abundance of CLC-1 was notably enhanced in the presence of MLN4924, a specific inhibitor of cullin-RING E3 ligases. Subsequent investigation with dominant-negative constructs against specific subtypes of cullin-RING E3 ligases suggested that CLC-1 seemed to serve as the substrate for cullin 4A (CUL4A) and 4B (CUL4B). Biochemical examinations further indicated that CUL4A/B, damage-specific DNA binding protein 1 (DDB1), and cereblon (CRBN) appeared to co-exist in the same protein complex with CLC-1. Moreover, suppression of CUL4A/B E3 ligase activity significantly enhanced the functional expression of the A531V mutant. Our data are consistent with the idea that the CUL4A/B-DDB1-CRBN complex catalyses the polyubiquitination and thus controls the degradation of CLC-1 channels.


Subject(s)
Chloride Channels/metabolism , Cullin Proteins/genetics , DNA-Binding Proteins/genetics , Peptide Hydrolases/genetics , Adaptor Proteins, Signal Transducing , Chloride Channels/biosynthesis , Cullin Proteins/metabolism , DNA-Binding Proteins/metabolism , Humans , Multiprotein Complexes/genetics , Multiprotein Complexes/metabolism , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Mutation , Myotonia Congenita/genetics , Myotonia Congenita/metabolism , Myotonia Congenita/pathology , Peptide Hydrolases/metabolism , Proteolysis , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...