Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.433
Filter
1.
Am J Cancer Res ; 14(7): 3639-3651, 2024.
Article in English | MEDLINE | ID: mdl-39113864

ABSTRACT

Hepatitis B virus (HBV) infection is a leading risk factor for hepatocellular carcinoma (HCC), contributing to cancer development through direct genomic integration and chronic inflammation. N-acetylcysteine (NAC), known for its antioxidant properties, is widely utilized in cancer prevention. However, clinical evidence regarding its protective effect against HCC in HBV carriers remains sparse. In this retrospective cohort study spanning 2008 to 2018, we utilized Taiwan's National Health Insurance Research Database (NHIRD) to include 1,061,174 chronic HBV carriers. Participants were stratified into NAC users and non-users using Propensity Score Matching. We assessed the incidence of HCC in both cohorts, examining the relationship between NAC usage duration and HCC incidence, and evaluating the dose-response effect. NAC users exhibited a significantly lower risk of developing HCC (adjusted hazard ratio [aHR]: 0.38; 95% confidence interval [CI]: 0.36-0.40; P < 0.0001). A dose-response relationship was evident, with higher cumulative defined daily doses (cDDDs) of NAC correlating with reduced HCC risk, revealing a significant trend (P < 0.0001). Notably, a daily NAC intensity of > 1.4 DDDs was associated with a decreased risk of HCC in HBV patients. Our results demonstrate that the use of NAC, in a dose-dependent manner, is intricately linked with a diminished incidence of HCC in individuals chronically infected with the HBV.

2.
Am J Cancer Res ; 14(7): 3555-3564, 2024.
Article in English | MEDLINE | ID: mdl-39113877

ABSTRACT

This study aimed to evaluate the impact of different pre-transplant local treatments on the survival of liver transplantation (LTx) recipients with BCLC Stage A Hepatocellular Carcinoma (HCC). We analyzed data from the Taiwan Cancer Registry and National Health Insurance Research Databases spanning 2012 to 2018. Employing propensity score matching, patients were categorized into three groups: those receiving local treatments (180 patients), hepatectomy (179 patients), and combined treatments (180 patients). The primary outcomes were overall mortality and HCC-specific death, assessed using time-varying Cox regression models and Kaplan-Meier survival analysis. During a median follow-up period of 3.92 years, all-cause mortality rates were observed as 74.44% for local treatments, 42.46% for hepatectomy, and 65.00% for combined treatments. HCC-specific mortality rates followed a similar pattern at 65.00%, 39.11%, and 59.44%, respectively. Adjusted hazard ratios demonstrated significantly elevated mortality risks associated with local and combined treatments compared to hepatectomy. Notably, the 2-year overall and HCC-specific survival rates were highest in the hepatectomy group, surpassing those observed in both the combined treatment and local treatment groups. The findings of our study highlight that for patients with BCLC Stage A HCC, undergoing hepatectomy prior to LTx is associated with superior survival outcomes compared to solely local treatments. This underscores the importance of considering hepatectomy as a vital component of the treatment strategy in this patient population.

3.
Am J Cancer Res ; 14(7): 3533-3544, 2024.
Article in English | MEDLINE | ID: mdl-39113878

ABSTRACT

Hepatitis C virus (HCV) infection significantly contributes to global hepatocellular carcinoma (HCC) incidence. N-Acetylcysteine (NAC), known for its antioxidant properties, is a potential therapeutic agent. However, evidence on its efficacy in reducing HCC risk among HCV patients is limited. A retrospective cohort analysis using Taiwan's National Health Insurance Research Database (2008-2018) included ≥18-year-old HCV patients. NAC usage (≥28 cumulative defined daily doses [cDDDs]) was assessed for its association with HCC risk using Cox regression models and propensity score matching. The study comprised 269,647 HCV patients, with detailed NAC dosage characterization and hazard ratios (HRs) for HCC risk. Post-matching, NAC usage emerged as the significant predictor of reduced HCC risk (adjusted HR: 0.39, 95% CI: 0.37-0.41, P<0.0001). Dose-response analysis showed reduced HCC risk with increasing cDDDs of NAC (P<0.0001). Higher daily NAC dosage (≥1 DDD) was associated with significantly lower HCC risk (adjusted HR: 0.33, 95% CI: 0.31-0.36, P<0.0001). The study provides compelling evidence for NAC's potential in reducing HCC risk among HCV patients. Insights into dose-dependent effects and optimal daily intensity thresholds offer valuable directions for future therapeutic strategies and clinical trials targeting HCC burden in HCV-infected individuals.

4.
J Trace Elem Med Biol ; 86: 127507, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39137608

ABSTRACT

Inorganic arsenic (iAs)-induced urothelial carcinoma (UC) develops into a poor-prognosis malignancy. Arsenic-induced oxidative stress contributes to circadian rhythm disruption altered metabolism. Glutamine anaplerosis is a common metabolic feature of rapidly proliferating malignant cells, in which glutaminase (GLS) is a key enzyme in this process. Therefore, this study intends to determine if arsenic-induced oxidative stress can alter circadian rhythms and promote glutamine anaplerosis. Exonic expression of core circadian molecules (CLOCK, ARNTL, and NR1D1) and GLS in varying grades of UC were assessed using 423 bladder cancer samples from the TCGA Urothelial Bladder Cancer (BLCA) dataset. The levels of circadian proteins and metabolic markers in 44 UC patients from non-black foot disease (BFD) and BFD areas were detected by immunohistochemistry. In vitro and in vivo experiments elucidated the regulatory mechanisms of arsenic-mediated circadian disturbance and metabolic alteration. Public database analysis showed that ARNTL, NR1D1, and GLS exhibited greater expression in more high-grade UC. Strong immunoreactivity for BMAL1, GLS, and low levels of NR1D1 were found in malignant urothelial lesions, especially in arsenic-exposed UC. Arsenic-induced overexpression of BMAL1 and GLS involves activation of NADH: quinone oxidoreductase 1 (NQO1), continuously altering the NADH oscillations to promote glutamate metabolism in SV-HUC-1, T24 and BFTC-905 cells. These phenomenon were also demonstrated in the urothelium of arsenic-exposed animals. The present findings highlight the potential clinical significance of BMAL1 and GLS in UC in the BFD region. Furthermore, these results suggest that arsenic interferes with circadian rhythm and glutamine anaplerosis by NADH oscillatory imbalance in urothelial cells and urothelial cancer cells, predisposing them to malignant development.

5.
Neuron ; 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39121859

ABSTRACT

Primary familial brain calcification (PFBC) is a genetic neurological disease, yet no effective treatment is currently available. Here, we identified five novel intronic variants in SLC20A2 gene from six PFBC families. Three of these variants increased aberrant SLC20A2 pre-mRNA splicing by altering the binding affinity of splicing machineries to newly characterized cryptic exons, ultimately causing premature termination of SLC20A2 translation. Inhibiting the cryptic-exon incorporation with splice-switching ASOs increased the expression levels of functional SLC20A2 in cells carrying SLC20A2 mutations. Moreover, by knocking in a humanized SLC20A2 intron 2 sequence carrying a PFBC-associated intronic variant, the SLC20A2-KI mice exhibited increased inorganic phosphate (Pi) levels in cerebrospinal fluid (CSF) and progressive brain calcification. Intracerebroventricular administration of ASOs to these SLC20A2-KI mice reduced CSF Pi levels and suppressed brain calcification. Together, our findings expand the genetic etiology of PFBC and demonstrate ASO-mediated splice modulation as a potential therapy for PFBC patients with SLC20A2 haploinsufficiency.

6.
Oncol Lett ; 28(3): 445, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39099584

ABSTRACT

Microsatellite instability (MSI) status is a prognostic biomarker for immunotherapy in certain types of cancers, such as colorectal cancers (CRCs) and endometrial cancers (ECs). Tumors that are categorized as having high MSI (MSI-H) express high levels of neoantigens for immune recognition. The typical MSI test measures the length of short mononucleotide repeats (SMR) poly(A) 21-27; however, a limitation of this test is the difficulty in determining the shift size, particularly in endometrial cancer. To investigate an MSI detection assay with improved performance, the present study analyzed the use of poly(A) 40-44 mononucleotide repeats to detect the MSI status of 100 patients with either CRC (n=50) or EC (n=50). Capillary electrophoresis was used to evaluate five long mononucleotide repeat (LMR) markers, including poly(A) 40-A, 40-B, 40-C, 40-D and 44. The concordance rate of the LMR-MSI assay compared with an immunohistochemistry MSI detection assay was 96.0 and 95.1% for CRCs and ECs respectively, with the detection limit of the LMR-MSI assay demonstrated to be 2.5% MSI-H in HCT116 colorectal carcinoma cell lines. The LMR-MSI assay yielded a 95.1% concordance rate in ECs compared with that in the SMR-MSI test (87.8%). The LMR-MSI test identified a significantly higher mean shift size (13 bp) in MSI-H tumors compared with the SMR-MSI test (10 bp), in both EC and CRC tissue samples. Together, the present study suggested that the LMR-MSI test could potentially be a sensitive and practical technology for molecular laboratory testing, particularly in the use of immunotherapy for patients with CRCs and ECs.

7.
World J Clin Oncol ; 15(7): 945-952, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39071469

ABSTRACT

BACKGROUND: Epidermal growth factor receptor (EGFR) mutation and c-ros oncogene 1 (ROS1) rearrangement are key genetic alterations and predictive tumor markers for non-small cell lung cancer (NSCLC) and are typically considered to be mutually exclusive. EGFR/ROS1 co-mutation is a rare event, and the standard treatment approach for such cases is still equivocal. CASE SUMMARY: Herein, we report the case of a 64-year-old woman diagnosed with lung adenocarcinoma, with concomitant EGFR L858R mutation and ROS1 rearrangement. The patient received two cycles of chemotherapy after surgery, but the disease progressed. Following 1-month treatment with gefitinib, the disease progressed again. However, after switching to crizotinib, the lesion became stable. Currently, crizotinib has been administered for over 53 months with a remarkable treatment effect. CONCLUSION: The efficacy of EGFR tyrosine kinase inhibitors and crizotinib was vastly different in this NSCLC patient with EGFR/ROS1 co-mutation. This report will aid future treatment of such patients.

8.
Vaccines (Basel) ; 12(7)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-39066352

ABSTRACT

SARS-CoV-2 new waves are primarily caused by changes to the spike protein (S), which can substantially decrease the efficacy of vaccines. Therefore, we tested several multivalent mRNA-LNP vaccines, targeting the full-length S proteins of different variants, and identified an optimal combination for protection against VOCs in BALB/c mice. The tested formulations included trivalent (WT + BA.5 + XBB.1.5), pentavalent (WT + BA.5 + XBB.1.5 + BQ.1.1 + CH.1.1), and octavalent (WT + BA.5 + XBB.1.5 + BQ.1.1 + CH.1.1 + Alpha + Delta + BA.2) vaccines. Among these multivalent vaccines, the pentavalent vaccine showed superior protection for almost all tested variants. Despite this, each multivalent vaccine elicited greater broad-spectrum neutralizing antibodies than the previously evaluated bivalent vaccine (WT + BA.5). Subsequently, we redesigned the multivalent vaccine to efficiently generate neutralizing antibodies against recent VOCs, including EG.5.1. Immunization with the redesigned pentavalent vaccine (WT + EG.5.1 + XBB.1.16 + Delta + BA.5) showed moderate levels of protection against recent Omicron VOCs. Results suggest that the neutralization activity of multivalent vaccines is better than those of the tested bivalent vaccines against WT + BA.5 and WT + EG.5.1. Moreover, the pentavalent vaccine we developed may be highly useful for neutralizing new Omicron VOCs.

9.
Neuron ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-39019040

ABSTRACT

Aberrant inorganic phosphate (Pi) homeostasis causes brain calcification and aggravates neurodegeneration, but the underlying mechanism remains unclear. Here, we found that primary familial brain calcification (PFBC)-associated Pi transporter genes Pit2 and Xpr1 were highly expressed in astrocytes, with importer PiT2 distributed over the entire astrocyte processes and exporter XPR1 localized to astrocyte end-feet on blood vessels. This polarized PiT2 and XPR1 distribution endowed astrocyte with Pi transport capacity competent for brain Pi homeostasis, which was disrupted in mice with astrocyte-specific knockout (KO) of either Pit2 or Xpr1. Moreover, we found that Pi uptake by PiT2, and its facilitation by PFBC-associated galactosidase MYORG, were required for the high Pi transport capacity of astrocytes. Finally, brain calcification was suppressed by astrocyte-specific PiT2 re-expression in Pit2-KO mice. Thus, astrocyte-mediated Pi transport is pivotal for brain Pi homeostasis, and elevating astrocytic Pi transporter function represents a potential therapeutic strategy for reducing brain calcification.

10.
Front Microbiol ; 15: 1410666, 2024.
Article in English | MEDLINE | ID: mdl-39044952

ABSTRACT

Methane-oxidizing bacteria (MOB) is a group of planktonic microorganisms that use methane as their primary source of cellular energy. For tropical lakes in monsoon Asia, there is currently a knowledge gap on MOB community diversity and the factors influencing their abundance. Herewith, we present a preliminary assessment of the MOB communities in three maar lakes in tropical monsoon Asia using Catalyzed Reporter Deposition, Fluorescence In-Situ Hybridization (CARD-FISH), 16S rRNA amplicon sequencing, and pmoA gene sequencing. Correlation analysis between MOB abundances and lakes' physicochemical parameters following seasonal monsoon events were performed to explain observed spatial and temporal patterns in MOB diversity. The CARD-FISH analyses detected the three MOB types (I, II, and NC10) which aligned with the results from 16S rRNA amplicons and pmoA gene sequencing. Among community members based on 16S rRNA genes, Proteobacterial Type I MOB (e.g., Methylococcaceae and Methylomonadaceae), Proteobacterial Type II (Methylocystaceae), Verrucomicrobial (Methylacidiphilaceae), Methylomirabilota/NC10 (Methylomirabilaceae), and archaeal ANME-1a were found to be the dominant methane-oxidizers in three maar lakes. Analysis of microbial diversity and distribution revealed that the community compositions in Lake Yambo vary with the seasons and are more distinct during the stratified period. Temperature, DO, and pH were significantly and inversely linked with type I MOB and Methylomirabilota during stratification. Only MOB type I was influenced by monsoon changes. This research sought to establish a baseline for the diversity and ecology of planktonic MOB in tropical monsoon Asia to better comprehend their contribution to the CH4 cycle in tropical freshwater ecosystems.

11.
Diabetes Obes Metab ; 26(9): 3914-3925, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38952343

ABSTRACT

AIM: Choosing the initial treatment for type 2 diabetes (T2D) is pivotal, requiring consideration of solid clinical evidence and patient characteristics. Despite metformin's historical preference, its efficacy in preventing cerebrovascular events lacked empirical validation. This study aimed to evaluate the associations between first-line monotherapy (metformin or non-metformin antidiabetic medications) and cerebrovascular complications in patients with T2D without diabetic complications. METHODS: We analysed 9090 patients with T2D without complications who were prescribed either metformin or non-metformin medications as initial therapy. Propensity score matching ensured group comparability. Cox regression analyses, stratified by initial metformin use, assessed cerebrovascular disease risk, adjusting for multiple covariates and using competing risk analysis. Metformin exposure was measured using cumulative defined daily doses. RESULTS: Metformin users had a significantly lower crude incidence of cerebrovascular diseases compared with non-users (p < .0001). Adjusted hazard ratios (aHRs) consistently showed an association between metformin use and a lower risk of overall cerebrovascular diseases (aHRs: 0.67-0.69) and severe events (aHRs: 0.67-0.69). The association with reduced risk of mild cerebrovascular diseases was significant across all models (aHRs: 0.73-0.74). Higher cumulative defined daily doses of metformin correlated with reduced cerebrovascular risk (incidence rate ratio: 0.62-0.94, p < .0001), indicating a dose-dependent effect. CONCLUSION: Metformin monotherapy is associated with a reduced risk of cerebrovascular diseases in early-stage T2D, highlighting its dose-dependent efficacy. However, the observed benefits might also be influenced by baseline differences and the increased risks associated with other medications, such as sulphonylureas. These findings emphasize the need for personalized diabetes management, particularly in mitigating cerebrovascular risk in early T2D stages.


Subject(s)
Cerebrovascular Disorders , Diabetes Mellitus, Type 2 , Hypoglycemic Agents , Metformin , Humans , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/complications , Metformin/therapeutic use , Hypoglycemic Agents/therapeutic use , Hypoglycemic Agents/adverse effects , Female , Male , Middle Aged , Cerebrovascular Disorders/prevention & control , Cerebrovascular Disorders/epidemiology , Aged , Incidence , Risk Factors , Diabetic Angiopathies/prevention & control , Diabetic Angiopathies/epidemiology
12.
Research (Wash D C) ; 7: 0409, 2024.
Article in English | MEDLINE | ID: mdl-39022746

ABSTRACT

Helicobacter pylori infection is characterized as progressive processes of bacterial persistence and chronic gastritis with features of infiltration of mononuclear cells more than granulocytes in gastric mucosa. Angiopoietin-like 4 (ANGPTL4) is considered a double-edged sword in inflammation-associated diseases, but its function and clinical relevance in H. pylori-associated pathology are unknown. Here, we demonstrate both pro-colonization and pro-inflammation roles of ANGPTL4 in H. pylori infection. Increased ANGPTL4 in the infected gastric mucosa was produced from gastric epithelial cells (GECs) synergistically induced by H. pylori and IL-17A in a cagA-dependent manner. Human gastric ANGPTL4 correlated with H. pylori colonization and the severity of gastritis, and mouse ANGPTL4 from non-bone marrow-derived cells promoted bacteria colonization and inflammation. Importantly, H. pylori colonization and inflammation were attenuated in Il17a -/-, Angptl4 -/-, and Il17a -/- Angptl4 -/- mice. Mechanistically, ANGPTL4 bound to integrin αV (ITGAV) on GECs to suppress CXCL1 production by inhibiting ERK, leading to decreased gastric influx of neutrophils, thereby promoting H. pylori colonization; ANGPTL4 also bound to ITGAV on monocytes to promote CCL5 production by activating PI3K-AKT-NF-κB, resulting in increased gastric influx of regulatory CD4+ T cells (Tregs) via CCL5-CCR4-dependent migration. In turn, ANGPTL4 induced Treg proliferation by binding to ITGAV to activate PI3K-AKT-NF-κB, promoting H. pylori-associated gastritis. Overall, we propose a model in which ANGPTL4 collectively ensures H. pylori persistence and promotes gastritis. Efforts to inhibit ANGPTL4-associated pathway may prove valuable strategies in treating H. pylori infection.

13.
Ann Neurol ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38979912

ABSTRACT

OBJECTIVE: Most paroxysmal kinesigenic dyskinesia (PKD) cases are hereditary, yet approximately 60% of patients remain genetically undiagnosed. We undertook the present study to uncover the genetic basis for undiagnosed PKD patients. METHODS: Whole-exome sequencing was performed for 106 PRRT2-negative PKD probands. The functional impact of the genetic variants was investigated in HEK293T cells and Drosophila. RESULTS: Heterozygous variants in KCNJ10 were identified in 11 individuals from 8 unrelated families, which accounted for 7.5% (8/106) of the PRRT2-negative probands. Both co-segregation of the identified variants and the significantly higher frequency of rare KCNJ10 variants in PKD cases supported impacts from the detected KCNJ10 heterozygous variants on PKD pathogenesis. Moreover, a KCNJ10 mutation-carrying father from a typical EAST/SeSAME family was identified as a PKD patient. All patients manifested dystonia attacks triggered by sudden movement with a short episodic duration. Patch-clamp recordings in HEK293T cells revealed apparent reductions in K+ currents of the patient-derived variants, indicating a loss-of-function. In Drosophila, milder hyperexcitability phenotypes were observed in heterozygous Irk2 knock-in flies compared to homozygotes, supporting haploinsufficiency as the mechanism for the detected heterozygous variants. Electrophysiological recordings showed that excitatory neurons in Irk2 haploinsufficiency flies exhibited increased excitability, and glia-specific complementation with human Kir4.1 rescued the Irk2 mutant phenotypes. INTERPRETATION: Our study established haploinsufficiency resulting from heterozygous variants in KCNJ10 can be understood as a previously unrecognized genetic cause for PKD and provided evidence of glial involvement in the pathophysiology of PKD. ANN NEUROL 2024.

14.
Endocrine ; 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38970759

ABSTRACT

PURPOSE: Hobnail features may enhance the clinical aggressiveness of papillary thyroid carcinoma (PTC). However, whether a low proportion (<30%) of these features contributes to increased PTC aggressiveness remains unclear. This study investigated whether PTC cases with a low proportion hobnail features (<30%) exhibit clinical invasiveness and pathological features of aggressiveness. METHODS: Pathological specimens from patients with postoperatively diagnosed PTC were retrospectively analyzed. Among them, 29 PTC cases with a low proportion of hobnail features (<30%) were compared with 173 consecutive classical PTC (cPTC) cases. Data regarding age at presentation, sex, tumor size, number of tumors, and histological characteristics were obtained by reviewing electronic medical records. Postoperative information was obtained during follow-up visits and telephone interviews. RESULTS: Twenty-nine patients with PTC with a low proportion of hobnail features (<30%) were identified, exhibiting a median age of 34 years. At a median follow-up of 31 (IQR, 23-37) months, two patients had recurrent disease in the PTC with a low proportion of hobnail features (<30%) group, whereas there was no recurrence in the cPTC group. No distant metastasis and postoperative mortality were observed in either group. Compared with the cPTC group, patients with PTC and a low proportion of hobnail features exhibited larger tumor volumes and higher susceptibility to capsular invasion and lymph node metastasis. Tumor size and hobnail features emerged as independent risk factors for lymph node metastasis. CONCLUSION: PTC with a low proportion hobnail features (<30%) and larger tumor volumes are associated with the occurrence of lymph node metastasis. A low proportion of hobnail features (<30%) in PTC may heighten invasiveness, elevating the risk of recurrence.

15.
Plant Cell Physiol ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38988198

ABSTRACT

As a model plant for bryophytes, Marchantia polymorpha offers insights into the role of RNA silencing in aiding early land plants navigate the challenges posed by high-temperature environments. Genomic analysis revealed unique ARGONAUTE1 ortholog gene (MpAGO1) in M. polymorpha that is regulated by two species-specific microRNAs (miRNAs), miR11707.1 and miR11707.2. Comparative studies of small RNA profiles from M. polymorpha cellular and MpAGO1 immunoprecipitation (MpAGO1-IP) profiles at various temperatures, along with analyses of Arabidopsis AGO1 (AtAGO1), revealed that MpAGO1 has a low-selectivity for a diverse range of small RNA species than AtAGO1. Protein structural comparisons revealed no discernible differences in the MID domains of MpAGO1 and AtAGO1, suggesting the complexity of miRNA species specificity and necessitating further exploration. Small RNA profiling and size exclusion chromatography have pinpointed a subset of M. polymorpha miRNAs, notably miR11707, that remain in free form within the cell at 22°C but are loaded into MpAGO1 at 28°C to engage in RNA silencing. Investigations into the mir11707 gene editing (mir11707ge) mutants provided evidence of the regulation of miR11707 in MpAGO1. Notably, while MpAGO1 mRNA expression decreases at 28°C, the stability of the MpAGO1 protein and its associated miRNAs is essential for enhancing the RISC activity, revealing the importance of RNA silencing in enabling M. polymorpha to survive thermal stress. This study advances our understanding of RNA silencing in bryophytes and provides groundbreaking insights into the evolutionary resilience of land plants to climatic adversities.

16.
Adv Sci (Weinh) ; : e2401370, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38981042

ABSTRACT

Skyrmions, a stable topological vectorial textures characteristic with skyrmionic number, hold promise for advanced applications in information storage and transmission. While the dynamic motion control of skyrmions has been realized with various techniques in magnetics and optics, the manipulation of acoustic skyrmion has not been done. Here, the propagation and control of acoustic skyrmion along a chain of metastructures are shown. In coupled acoustic resonators made with Archimedes spiral channel, the skyrmion hybridization is found giving rise to bonding and antibonding skyrmionic modes. Furthermore, it is experimentally observed that the skyrmionic mode of acoustic velocity field distribution can be robustly transferred covering a long distance and almost no distortion of the skyrmion textures in a chain of metastructures, even if a structure defect is introduced in the travel path. The proposed localized acoustic skyrmionic mode coupling and propagating is expected in future applications for manipulating acoustic information storage and transfer.

17.
Am J Cancer Res ; 14(6): 2957-2970, 2024.
Article in English | MEDLINE | ID: mdl-39005681

ABSTRACT

To evaluate the impact of statin use on overall survival and lung cancer-specific survival in patients with unresectable stage III lung squamous cell carcinoma (LSCC) undergoing standard concurrent chemoradiotherapy (CCRT). Using data from the Taiwan Cancer Registry Database and National Health Insurance Research Database, this propensity score matching cohort study analyzed the influence of statin use during CCRT on overall survival and lung cancer-specific survival. Statin use during CCRT was independently associated with significant improvements in overall survival and lung cancer-specific survival. The adjusted hazard ratio (95% CI) for all-cause mortality in the statin group versus the non-statin group was 0.60 (0.53-0.68, P < 0.0001). Similarly, the adjusted hazard ratio for lung cancer-specific mortality in the statin group versus the non-statin group was 0.61 (95% CI, 0.54-0.70, P < 0.0001). Pravastatin and fluvastatin exhibited the greatest potential in reducing lung cancer-specific mortality among statins, with rosuvastatin following closely behind. Atorvastatin demonstrated comparable effectiveness, while simvastatin and lovastatin displayed lower efficacy in this regard. Furthermore, a dose-response relationship was observed, with higher cumulative defined daily doses and greater daily intensity of statin use associated with reduced mortality. Our study provides evidence that statin use during CCRT for unresectable stage III LSCC is associated with significant improvements in overall survival and lung cancer-specific survival. Pravastatin showed the highest potential for reducing lung cancer-specific mortality among statins, followed by rosuvastatin. Atorvastatin and fluvastatin exhibited similar effectiveness, while simvastatin and lovastatin demonstrated lower efficacy. The dose-response relationship showed higher statin utilization in reducing lung cancer-specific mortality.

18.
Acta Trop ; 257: 107320, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39002739

ABSTRACT

PURPOSE: The polarization of macrophages with the resulting inflammatory response play a crucial part in tissue and organ damage due to inflammatory. Study has proved Lian Hua Qing Wen capsules (LHQW) can reduce activation of inflammatory response and damage of tissue derived from the inflammatory reactions. However, the mechanism of LHQW regulates the macrophage-induced inflammatory response is unclear. Therefore, we investigated the mechanism of LHQW regulated the inflammatory response of M1 macrophages by cellular experiments and computer simulations. METHODS: This study has analysed the targets and mechanisms of macrophage regulating inflammatory response at gene and protein levels through bioinformatics. The monomeric components of LHQW were analyzed by High Performance Liquid Chromatography (HPLC). We established the in vitro cell model by M1 macrophages (Induction of THP-1 cells into M1 macrophages). RT-qPCR and immunofluorescence were used to detect changes in gene and protein levels of key targets after LHQW treatment. Computer simulations were utilized to verify the binding stability of monomeric components and protein targets. RESULTS: Macrophages had 140,690 gene targets, inflammatory response had 12,192 gene targets, intersection gene targets were 11,772. Key monomeric components (including: Pinocembrin, Fargesone-A, Nodakenin and Bowdichione) of LHQW were screened by HPLC. The results of cellular experiments indicated that LHQW could significantly reduce the mRNA expression of CCR5, CSF2, IFNG and TNF, thereby alleviating the inflammatory response caused by M1 macrophage. The computer simulations further validated the binding stability and conformation of key monomeric components and key protein targets, and IFNG/Nodakenin was able to form the most stable binding conformation for its action. CONCLUSION: In this study, the mechanism of LHQW inhibits the polarization of macrophages and the resulting inflammatory response was investigated by computer simulations and cellular experiments. We found that LHQW may not only reduce cell damage and death by acting on TNF and CCR5, but also inhibit the immune recognition process and inflammatory response by regulating CSF2 and IFNG to prevent polarization of macrophages. Therefore, these results suggested that LHQW may act through multiple targets to inhibit the polarization of macrophages and the resulting inflammatory response.


Subject(s)
Computer Simulation , Drugs, Chinese Herbal , Macrophages , Humans , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Macrophages/immunology , Macrophages/drug effects , Macrophages/metabolism , Inflammation , Anti-Inflammatory Agents/pharmacology , THP-1 Cells , Computational Biology , Chromatography, High Pressure Liquid
19.
Proc Natl Acad Sci U S A ; 121(28): e2322972121, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38968116

ABSTRACT

Rapid accumulation of repair factors at DNA double-strand breaks (DSBs) is essential for DSB repair. Several factors involved in DSB repair have been found undergoing liquid-liquid phase separation (LLPS) at DSB sites to facilitate DNA repair. RNF168, a RING-type E3 ubiquitin ligase, catalyzes H2A.X ubiquitination for recruiting DNA repair factors. Yet, whether RNF168 undergoes LLPS at DSB sites remains unclear. Here, we identified K63-linked polyubiquitin-triggered RNF168 condensation which further promoted RNF168-mediated DSB repair. RNF168 formed liquid-like condensates upon irradiation in the nucleus while purified RNF168 protein also condensed in vitro. An intrinsically disordered region containing amino acids 460-550 was identified as the essential domain for RNF168 condensation. Interestingly, LLPS of RNF168 was significantly enhanced by K63-linked polyubiquitin chains, and LLPS largely enhanced the RNF168-mediated H2A.X ubiquitination, suggesting a positive feedback loop to facilitate RNF168 rapid accumulation and its catalytic activity. Functionally, LLPS deficiency of RNF168 resulted in delayed recruitment of 53BP1 and BRCA1 and subsequent impairment in DSB repair. Taken together, our finding demonstrates the pivotal effect of LLPS in RNF168-mediated DSB repair.


Subject(s)
DNA Repair , Ubiquitin-Protein Ligases , Humans , DNA Breaks, Double-Stranded , Histones/metabolism , Histones/genetics , Polyubiquitin/metabolism , Tumor Suppressor p53-Binding Protein 1/metabolism , Tumor Suppressor p53-Binding Protein 1/genetics , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitination
20.
Gut Microbes ; 16(1): 2380061, 2024.
Article in English | MEDLINE | ID: mdl-39078050

ABSTRACT

Cancer immunotherapy has been regarded as a promising strategy for cancer therapy by blocking immune checkpoints and evoking immunity to fight cancer, but its efficacy seems to be heterogeneous among patients. Manipulating the gut microbiota is a potential strategy for enhancing the efficacy of immunotherapy. Here, we report that MS-20, also known as "Symbiota®", a postbiotic that comprises abundant microbial metabolites generated from a soybean-based medium fermented with multiple strains of probiotics and yeast, inhibited colon and lung cancer growth in combination with an anti-programmed cell death 1 (PD1) antibody in xenograft mouse models. Mechanistically, MS-20 remodeled the immunological tumor microenvironment by increasing effector CD8+ T cells and downregulating PD1 expression, which were mediated by the gut microbiota. Fecal microbiota transplantation (FMT) from mice receiving MS-20 treatment to recipient mice increased CD8+ T-cell infiltration into the tumor microenvironment and significantly improved antitumor activity when combined with anti-PD1 therapy. Notably, the abundance of Ruminococcus bromii, which increased following MS-20 treatment, was positively associated with a reduced tumor burden and CD8+ T-cell infiltration in vivo. Furthermore, an ex vivo study revealed that MS-20 could alter the composition of the microbiota in cancer patients, resulting in distinct metabolic pathways associated with favorable responses to immunotherapy. Overall, MS-20 could act as a promising adjuvant agent for enhancing the efficacy of immune checkpoint-mediated antitumor therapy.


Subject(s)
CD8-Positive T-Lymphocytes , Gastrointestinal Microbiome , Programmed Cell Death 1 Receptor , Tumor Microenvironment , Animals , Mice , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , Programmed Cell Death 1 Receptor/metabolism , Humans , Tumor Microenvironment/immunology , CD8-Positive T-Lymphocytes/immunology , Fecal Microbiota Transplantation , Cell Line, Tumor , Probiotics/administration & dosage , Probiotics/pharmacology , Immunotherapy , Female , Colonic Neoplasms/immunology , Colonic Neoplasms/therapy , Colonic Neoplasms/drug therapy , Colonic Neoplasms/microbiology , Immune Checkpoint Inhibitors/pharmacology , Lung Neoplasms/immunology , Lung Neoplasms/drug therapy , Lung Neoplasms/therapy , Mice, Inbred BALB C , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL