Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
Zhonghua Yi Xue Za Zhi ; 90(39): 2776-81, 2010 Oct 26.
Article in Chinese | MEDLINE | ID: mdl-21162917

ABSTRACT

OBJECTIVE: The vaccines currently developed against infectious diseases fail to induce effective antiviral immune responses to control an abrupt outbreak of viral diseases epidemic in a short space of time. Hence there is an urgent need to develop emergency vaccines capable of producing prophylactic effects against infectious diseases. RNA interference (RNAi) is a mechanism that inhibits gene expression by causing the degradation of specific RNA molecules or hindering the transcription of specific genes. The rapidity and uniqueness of RNAi responses can make up for the current inadequacy of antiviral preventive regimes. Here we evaluate the antiviral potential of short hairpin RNA (shRNA) targeting C (core) gene of hepatitis B virus (HBV). It plays essential roles in HBcAg encoding and viral attachment to susceptible cells during its life cycle. The present study was intended to investigate the inhibitory effect of C-specific shRNAs on HBV replication and expression in BHK-21 cells. METHODS: The reporter gene expression vector of pC-EGFP-N1 was constructed by cloning the DNA (PCR product) of HBV C into the EcoRI-HindIII sites of pEGFP-N1 to fuse C to enhanced green fluorescent protein (EGFP) for providing a reporting system for monitoring siRNA function. Plasmid pC was constructed by cloning the DNA of HBV C into the EcoRI-HindIII sites of pCDNA3.1B(-) directly under the control of cytomegalovirus promoter. Two plasmids (S1 & S2) were constructed to express shRNAs targeting C of HBV with the length of 24 nucleotide (nt) homologous in sequence to the HBV C gene. Plasmids were designed and synthesized according to the HBV genome (HBV genotype B, ayw1 subtype) of chronic hepatic B patients from 56 ethnic minorities in China. After cloning and sequencing, the investigators registered them with the GenBank accession numbers of AY517488 (CYN/2002) and AY517489 (CYN/2000), etc. Simultaneously, one of nonspecific shRNA-S3 with a length of 24 nt was also designed randomly for negative control. After cloning into vector pU6 for constructing shRNA-expressing plasmids, they were then cotransfected into BHK-21 cells along with reporter gene expression vector of pC-EGFP-N1. First, upon a determination of the number of cells exhibiting EGFP expression in BHK-21 cells as detected by an Olympus BH-2 fluorescence microscope and FACS-440 flow cytometry (Becton-Dickinson, USA) at different times after cotransfection, the investigators evaluated the gene inhibitory efficiency of both plasmids by an EGFP reporter system in BHK-21 cells. Subsequently, the antiviral efficacy of both plasmids in BHK-21 cells was further investigated by real-time quantitative polymerase chain reaction. RESULTS: In comparison with single plasmid transfection pC-EGFP-N1 or pEGFP-N1, fluorescence microscope and flow cytometry detection at 24 h post-cotransfection revealed that the expression of reporter gene EGFP in cotransfection group involving S1 or S2 and S1 + S2 cotransfection group was reduced significantly by about 90% in EGFP signal versus the control. And the EGFP expression in control plasmid cotransfected S3 or pU6 was not significantly reduced in BHK-21 cells (P < 0.01). It was found that the expression of mRNAs of HBV C and EGFP gene as detected by real-time quantitative PCR was the same as that detected by fluorescence microscope and flow cytometry (P < 0.01), thereby further corroborating the antiviral efficacy of RNAi. The antiviral efficacy extended to almost 48 hours. The results indicted that a DNA vector-based RNAi technology could effectively and specifically inhibit the replication and expression of HBV in BHK-21 cells. CONCLUSION: For the first time it has been found that RNAi induced by shRNA targeting C gene exerts an effective and unique inhibition of HBV replication and expression in BHK-21 cells. Thus RNAi may provide an effective emergency vaccine against major infectious diseases such as HBV infection.


Subject(s)
Gene Targeting , Hepatitis B virus/genetics , Hepatitis B/virology , RNA, Small Interfering/genetics , Virus Replication , Cell Line , China , Genetic Vectors , Hepatitis B virus/physiology , Humans , RNA Interference , RNA, Messenger , RNA, Viral , Transfection
2.
Zhonghua Yi Xue Za Zhi ; 89(5): 347-51, 2009 Feb 10.
Article in Chinese | MEDLINE | ID: mdl-19563716

ABSTRACT

OBJECTIVE: To study the inhibitive effects of transfection of siRNA expressing plasmids targeting S gene, one of the 4 open reading frames of hepatitis B virus (HBV), on the replication and expression of HBV. METHODS: Two plasmids expressing 2 siRNAs targeting S gene, one of the 4 open reading frames of HBV (S1 and S2) and one nonspecific plasmid (siRNA-S3), as negative control, with the length of 21 nt heterologous to the HBV/U95551 genome were constructed, and then transfected into the hepatic cancer cells of the line HepG2.2.15. 48 hours later, real-time PCR was used to evaluate the gene silencing efficiency and ELISA was used to detect the expression of HBsAg and hepatitis B e antigen (HBeAg), protein markers of HBV, in the supernatants. RESULTS: The inhibition rates of HBsAg and HBeAg expression of the HepG2.2.15 cells transfected with S1 were 60% and 56% respectively, those of the HepG2.2.15 cells transfected with S2 were 73% and 70% respectively, those of the HepG2.2.15 cells transfected with S1+S2 were 82% and 78% respectively, and those of the HepG2.2.15 cells transfected with S3 were not significantly different from those of the blank control group. RT-PCR showed that the mRNA expression rates of HBsAg and HBeAg in the HepG2.2.15 cells transfected with S1, S2, and S1+S2 were inhibited by 64%-88% t respectively. CONCLUSION: Transfection of the vector plasmids expressing the siRNAs targeting S gene inhibits the expression of HBsAg and HBeAg in hepatic cancer cells. RNAi may provide a viable strategy against viruses for the prevention and treatment of HBV infection.


Subject(s)
Hepatitis B virus/physiology , RNA, Small Interfering , Viral Envelope Proteins/genetics , Virus Replication , Cell Line, Tumor , Gene Expression , Gene Expression Regulation, Viral , Genetic Vectors , Hepatitis B virus/genetics , Humans , Open Reading Frames , RNA Interference , RNA, Viral , Transfection
3.
Vet Microbiol ; 125(3-4): 224-31, 2007 Dec 15.
Article in English | MEDLINE | ID: mdl-17656048

ABSTRACT

The epitopes of the capsid of foot-and-mouth disease virus (FMDV) play important roles in the construction of highly immunogenic subunit vaccines. However few epitopes have been found for FMDV serotype Asia1. In this study we screened for epitopes of the VP1 and VP2 proteins of FMDV serotype Asia1 isolate, YNBS/58. Fragments consisting of amino acids 133-163 of VP1 and amino acids 1-33 of VP2 contained epitopes, and both induced lymphoproliferation in guinea pigs. Only the VP1 fragment induced neutralizing antibodies but the VP2 peptide dramatically increased the neutralizing antibody response induced by the VP1 peptide.


Subject(s)
Antibodies, Viral/biosynthesis , Capsid Proteins/immunology , Foot-and-Mouth Disease Virus/immunology , Foot-and-Mouth Disease/immunology , Immunization/standards , Vaccines, Subunit/immunology , Animals , Antibodies, Viral/blood , Antibodies, Viral/immunology , Capsid Proteins/genetics , Cell Proliferation , Epitopes/analysis , Epitopes/immunology , Female , Foot-and-Mouth Disease/prevention & control , Foot-and-Mouth Disease/virology , Guinea Pigs , Male , Neutralization Tests , Viral Fusion Proteins/genetics , Viral Fusion Proteins/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...