Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Cell Death Differ ; 31(5): 558-573, 2024 May.
Article in English | MEDLINE | ID: mdl-38570607

ABSTRACT

Esophageal squamous cell carcinoma (ESCC) is a deadly malignancy with notable metabolic reprogramming, yet the pivotal metabolic feature driving ESCC progression remains elusive. Here, we show that methionine cycle exhibits robust activation in ESCC and is reversely associated with patient survival. ESCC cells readily harness exogenous methionine to generate S-adenosyl-methionine (SAM), thus promoting cell proliferation. Mechanistically, methionine augments METTL3-mediated RNA m6A methylation through SAM and revises gene expression. Integrative omics analysis highlights the potent influence of methionine/SAM on NR4A2 expression in a tumor-specific manner, mediated by the IGF2BP2-dependent stabilization of methylated NR4A2 mRNA. We demonstrate that NR4A2 facilitates ESCC growth and negatively impacts patient survival. We further identify celecoxib as an effective inhibitor of NR4A2, offering promise as a new anti-ESCC agent. In summary, our findings underscore the active methionine cycle as a critical metabolic characteristic in ESCC, and pinpoint NR4A2 as a novel methionine-responsive oncogene, thereby presenting a compelling target potentially superior to methionine restriction.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Methionine , Nuclear Receptor Subfamily 4, Group A, Member 2 , Humans , Methionine/metabolism , Esophageal Squamous Cell Carcinoma/metabolism , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Neoplasms/metabolism , Esophageal Neoplasms/pathology , Esophageal Neoplasms/genetics , Nuclear Receptor Subfamily 4, Group A, Member 2/metabolism , Nuclear Receptor Subfamily 4, Group A, Member 2/genetics , Cell Line, Tumor , Animals , Oncogenes , Mice , Cell Proliferation/drug effects , Gene Expression Regulation, Neoplastic , Mice, Nude
2.
J Nutr Biochem ; 121: 109434, 2023 11.
Article in English | MEDLINE | ID: mdl-37661068

ABSTRACT

Excessive fructose intake is associated with the rising prevalence of nonalcoholic fatty liver disease (NAFLD). The gut microbiome (GM) and bile acids (BAs) are involved in the pathogenesis of NAFLD, but the impact of fructose on their cross-talk is unclear. In this study, adult male C57BL/6J mice were fed a normal diet with tap water (ND) or with 4% fructose in the drinking water (Fru), 60% high-fat diet with tap water (HF) or with 4% fructose solution (HFF) for 12 weeks. Targeted BA analysis was performed in five anatomical sites including the liver, ileum contents, portal serum, cecum contents, and feces. Metagenomic sequencing was performed to explore gut dysbiosis. Within 12 weeks, the 4% fructose diet could initially stimulate gut dysbiosis and BA upregulation in the ileum, portal serum, and cecum when the intestinal and hepatic transport system remained stable without hepatic lipid accumulation. However, the chronic consumption of fructose promoted HF-induced NAFLD, with significantly increased body weight, impaired glucose tolerance, and advanced liver steatosis. BA transporters were inhibited in HFF, causing the block of internal BA circulation and increased BA secretion via cecum contents and feces. Notably, lithocholic acid (LCA) and its taurine conjugates were elevated within the enterohepatic circulation. Meanwhile, the Clostridium species were significantly altered in both Fru and HFF groups and were closely associated with fructose and BA metabolism. In summary, excessive fructose caused gut dysbiosis and BA alterations, promoting HF-induced NAFLD. The crosstalk between Clostridium sp. and LCA species were potential targets in fructose-mediated NAFLD.


Subject(s)
Non-alcoholic Fatty Liver Disease , Mice , Animals , Male , Non-alcoholic Fatty Liver Disease/metabolism , Bile Acids and Salts/metabolism , Fructose/adverse effects , Fructose/metabolism , Dysbiosis/metabolism , Mice, Inbred C57BL , Liver/metabolism , Diet, High-Fat/adverse effects , Clostridium , Water/metabolism
3.
Phytomedicine ; 113: 154732, 2023 May.
Article in English | MEDLINE | ID: mdl-36933457

ABSTRACT

BACKGROUND: New therapeutic approaches are required to improve the outcomes of lung cancer (LC), a leading cause of cancer-related deaths worldwide. Chinese herbal medicine formulae widely used in China provide a unique opportunity for improving LC treatment, and the Shuang-Huang-Sheng-Bai (SHSB) formula is a typical example. However, the underlying mechanisms of action remains unclear. PURPOSE: This study aimed to confirm the efficacy of SHSB against lung adenocarcinoma (LUAD), which is a major histological type of LC, unveil the downstream targets of this formula, and assess the clinical relevance and biological roles of the newly identified target. METHODS: An experimental metastasis mouse model and a subcutaneous xenograft mouse model were used to evaluate the anti-cancer activity of SHSB. Multi-omics profiling of subcutaneous tumors and metabolomic profiling of sera were performed to identify downstream targets, especially the metabolic targets of SHSB. A clinical trial was conducted to verify the newly identified metabolic targets in patients. Next, the metabolites and enzymes engaged in the metabolic pathway targeted by SHSB were measured in clinical samples. Finally, routine molecular experiments were performed to decipher the biological functions of the metabolic pathways targeted by SHSB. RESULTS: Oral SHSB administration showed overt anti-LUAD efficacy as revealed by the extended overall survival of the metastasis model and impaired growth of implanted tumors in the subcutaneous xenograft model. Mechanistically, SHSB administration altered protein expression in the post-transcriptional layer and modified the metabolome of LUAD xenografts. Integrative analysis demonstrated that SHSB markedly inhibited acetyl-CoA synthesis in tumors by post-transcriptionally downregulating ATP-citrate lyase (ACLY). Consistently, our clinical trial showed that oral SHSB administration declined serum acetyl-CoA levels of patients with LC. Moreover, acetyl-CoA synthesis and ACLY expression were both augmented in clinical LUAD tissues of patients, and high intratumoral ACLY expression predicted a detrimental prognosis. Finally, we showed that ACLY-mediated acetyl-CoA synthesis is essential for LUAD cell growth by promoting G1/S transition and DNA replication. CONCLUSION: Limited downstream targets of SHSB for LC treatment have been reported in previous hypothesis-driven studies. In this study, we conducted a comprehensive multi-omics investigation and demonstrated that SHSB exerted its anti-LUAD efficacy by actively and post-transcriptionally modulating protein expression and particularly restraining ACLY-mediated acetyl-CoA synthesis.


Subject(s)
Adenocarcinoma of Lung , Drugs, Chinese Herbal , Lung Neoplasms , Humans , Mice , Animals , ATP Citrate (pro-S)-Lyase/genetics , ATP Citrate (pro-S)-Lyase/metabolism , Acetyl Coenzyme A/metabolism , Drugs, Chinese Herbal/pharmacology , Adenocarcinoma of Lung/drug therapy , Lung Neoplasms/drug therapy
4.
Basic Clin Pharmacol Toxicol ; 132(3): 242-252, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36482064

ABSTRACT

Bone tissue is a common metastatic site of lung cancer, and bone metastasis is characterized by abnormal differentiation and malfunction of osteoclast, and the roles of exosomes derived from lung cancer have attracted much attention. In our study, we found that the level of HOTAIR expression in A549 and H1299 exosomes was higher than those of normal lung fibrocytes. Overexpression of HOTAIR in A549 and H1299 exosomes promoted osteoclast differentiation. Furthermore, A549-Exos and H1299-Exos targeted bone tissues, and bone formation was significantly inhibited in vivo. Mechanistically, exosomal lncRNA HOTAIR promoted bone resorption by targeting TGF-ß/PTHrP/RANKL pathway.


Subject(s)
Osteoclasts , RNA, Long Noncoding , Humans , Cell Differentiation/genetics , Exosomes/genetics , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Osteoclasts/metabolism , Parathyroid Hormone-Related Protein/metabolism , RANK Ligand/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Transforming Growth Factor beta/metabolism
6.
J Pharm Biomed Anal ; 219: 114934, 2022 Sep 20.
Article in English | MEDLINE | ID: mdl-35839582

ABSTRACT

Pseudouridine, a C-C glycosidic isomer of uridine, is derived from uridine via isomerization, and pseudouridylation is the most common post-transcriptional modification. Our previous study shows pseudouridine may serve an important role in acute myeloid leukemia (AML). The clinical value of pseudouridine and uridine is hampered by the lack of a quantitative methods with high sensitivity, specificity, and stability. Here, we established a supercritical fluid chromatography-tandem triple quadrupole mass spectrometry (SFC-TQ-MS)-based method to quantitate serum pseudouridine and uridine simultaneously. The procedure involves protein precipitation of sample, extraction with solid phase extraction (SPE) plate, 5-min SFC separation by applying gradient elution on a Acquity UPC2 Torus DIOL column, and analysis by TQ-MS using well-characterized calibration standards. After validation, the method was used to measure pseudouridine and uridine concentrations in 143 serum samples from healthy controls (HCs) and AML patients to evaluate their prognostic potential. The successfully validated assay had a linear range of 5-5000 ng/mL, accuracies between 97 % and 102 %, and intra- and inter-assay imprecision <10 %. Compared to HCs, pseudouridine was raised significantly, while uridine was curtailed severely in patients with AML. With a median concentration of 671.4 ng/mL as the prognostic cut-off value, high level pseudouridine independently predicted poor survival of AML patients. Quantification of serum pseudouridine and uridine by SFC-TQ-MS provides an analytically sensitive and reproducible method for clinical diagnosis, and high concentration of pseudouridine is an independent prognostic factor for patients with AML.


Subject(s)
Chromatography, Supercritical Fluid , Leukemia, Myeloid, Acute , Chromatography, Supercritical Fluid/methods , Humans , Leukemia, Myeloid, Acute/diagnosis , Pseudouridine , Tandem Mass Spectrometry/methods , Uridine
7.
Genomics Proteomics Bioinformatics ; 20(4): 670-687, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35351627

ABSTRACT

Esophageal squamous cell carcinoma (ESCC) is a major histological subtype of esophageal cancer with a poor prognosis. Although several serum metabolomic investigations have been reported, ESCC tumor-associated metabolic alterations and predictive biomarkers in sera have not been defined. Here, we enrolled 34 treatment-naive patients with ESCC and collected their pre- and post-esophagectomy sera together with the sera from 34 healthy volunteers for a metabolomic survey. Our comprehensive analysis identified ESCC tumor-associated metabolic alterations as represented by a panel of 12 serum metabolites. Notably, postoperative abrosia and parenteral nutrition substantially perturbed the serum metabolome. Furthermore, we performed an examination using sera from carcinogen-induced mice at the dysplasia and ESCC stages and identified three ESCC tumor-associated metabolites conserved between mice and humans. Notably, among these metabolites, the level of pipecolic acid was observed to be progressively increased in mouse sera from dysplasia to cancerization, and it could be used to accurately discriminate between mice at the dysplasia stage and healthy control mice. Furthermore, this metabolite is essential for ESCC cells to restrain oxidative stress-induced DNA damage and cell proliferation arrest. Together, this study revealed a panel of 12 ESCC tumor-associated serum metabolites with potential for monitoring therapeutic efficacy and disease relapse, presented evidence for refining parenteral nutrition composition, and highlighted serum pipecolic acid as an attractive biomarker for predicting ESCC tumorigenesis.


Subject(s)
Carcinoma, Squamous Cell , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Animals , Mice , Esophageal Neoplasms/genetics , Esophageal Neoplasms/pathology , Esophageal Neoplasms/surgery , Carcinoma, Squamous Cell/diagnosis , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Biomarkers, Tumor/genetics
8.
Adv Sci (Weinh) ; 9(16): e2200263, 2022 05.
Article in English | MEDLINE | ID: mdl-35285172

ABSTRACT

Bile reflux gastritis (BRG) is associated with the development of gastric cancer (GC), but the specific mechanism remains elusive. Here, a comprehensive study is conducted to explore the roles of refluxed bile acids (BAs) and microbiome in gastric carcinogenesis. The results show that conjugated BAs, interleukin 6 (IL-6), lipopolysaccharide (LPS), and the relative abundance of LPS-producing bacteria are increased significantly in the gastric juice of both BRG and GC patients. A secondary BA, taurodeoxycholic acid (TDCA), is significantly and positively correlated with the LPS-producing bacteria in the gastric juice of these patients. TDCA promotes the proliferation of normal gastric epithelial cells (GES-1) through activation of the IL-6/JAK1/STAT3 pathway. These results are further verified in two mouse models, one by gavage of TDCA, LPS, and LPS-producing bacteria (Prevotella melaninogenica), respectively, and the other by bile reflux (BR) surgery, mimicking clinical bile refluxing. Moreover, the bile reflux induced gastric precancerous lesions observed in the post BR surgery mice can be prevented by treatment with cryptotanshinone, a plant-derived STAT3 inhibitor. These results reveal an important underlying mechanism by which bile reflux promotes gastric carcinogenesis and provide an alternative strategy for the prevention of GC associated with BRG.


Subject(s)
Bile Reflux , Carcinogenesis , Gastritis , Gastrointestinal Microbiome , Stomach Neoplasms , Taurodeoxycholic Acid , Animals , Bile Reflux/complications , Bile Reflux/pathology , Carcinogenesis/metabolism , Gastritis/complications , Gastritis/pathology , Humans , Interleukin-6/metabolism , Lipopolysaccharides , Mice , Stomach Neoplasms/etiology , Stomach Neoplasms/metabolism , Taurodeoxycholic Acid/metabolism
9.
Cell Biosci ; 12(1): 8, 2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35063020

ABSTRACT

BACKGROUND: A variety of neurons in hypothalamus undergo a complicated regulation on transcription activity of multiple genes for hypothalamic-pituitary-gonadal axis activation during pubertal development. Identification of puberty-associated cell composition and characterization of the unique transcriptional signatures across different cells are beneficial to isolation of specific neurons and advanced understanding of their functions. METHODS: The hypothalamus of female Sprague-Dawley rats in postnatal day-25, 35 and 45 were used to define the dynamic spatial atlas of gene expression in the arcuate nucleus (ARC) by 10× Genomics Visium platform. A surface protein expressed selectively by kisspeptin neurons was used to sort neurons by flow cytometric assay in vitro. The transcriptome of the isolated cells was examined using Smart sequencing. RESULTS: Four subclusters of neurons with similar gene expression signatures in ARC were identified. Only one subcluster showed the robust expression of Kiss1, which could be isolated by a unique membrane surface biomarker Solute carrier family 18 member A3 (SLC18A3). Moreover, genes in different subclusters presenting three expression modules distinctly functioned in each pubertal stage. Different types of cells representing distinct functions on glial or neuron differentiation, hormone secretion as well as estradiol response precisely affect and coordinate with each other, resulting in a complicated regulatory network for hypothalamic-pituitary-gonadal axis initiation and modulation. CONCLUSION: Our data revealed a comprehensive transcriptomic overview of ARC within different pubertal stages, which could serve as a valuable resource for the study of puberty and sexual development disorders.

10.
J Proteome Res ; 21(3): 822-832, 2022 03 04.
Article in English | MEDLINE | ID: mdl-34319108

ABSTRACT

Infantile hemangioma (IH), the most common benign tumor in infancy, mostly arises and has rapid growth before 3 months of age. Because irreversible skin changes occur in the early proliferative stage, early medical treatment is essential to reduce the permanent sequelae caused by IH. Yet there are still no early screening biomarkers for IH before its visible emergence. This study aimed to explore prediction biomarkers using noninvasive umbilical cord blood (UCB). A prospective study of the metabolic profiling approach was performed on UCB sera from 28 infants with IH and 132 matched healthy controls from a UCB population comprising over 1500 infants (PeptideAtlas: PASS01675) using liquid chromatography-mass spectrometry. The metabolic profiling results exhibited the characteristic metabolic aberrance of IH. Machine learning suggested a panel of biomarkers to predict the occurrence of IH, with the area under curve (AUC) values in the receiver operating characteristic analysis all >0.943. Phenylacetic acid had potential to predict infants with large IH (diameter >2 cm) from those with small IH (diameter <2 cm), with an AUC of 0.756. The novel biomarkers in noninvasive UCB sera for predicting IH before its emergence might lead to a revolutionary clinical utility.


Subject(s)
Fetal Blood , Hemangioma , Biomarkers , Chromatography, Liquid , Hemangioma/complications , Hemangioma/diagnosis , Hemangioma/drug therapy , Humans , Infant , Prospective Studies
11.
Mol Ther Oncolytics ; 23: 107-123, 2021 Dec 17.
Article in English | MEDLINE | ID: mdl-34703880

ABSTRACT

Metabolic reprogramming is a core hallmark of cancer and is key for tumorigenesis and tumor progression. Investigation of metabolic perturbation by anti-cancer compounds would allow a thorough understanding of the underlying mechanisms of these agents and identification of new anti-cancer targets. Here, we demonstrated that the administration of oleanolic acid (OA) rapidly altered cancer metabolism, particularly suppressing the purine salvage pathway (PSP). PSP restoration significantly opposed OA-induced DNA replication and cell proliferation arrest, underscoring the importance of this pathway for the anti-cancer activity of OA. Hypoxanthine-guanine phosphoribosyltransferase (HGPRT) and 5'-nucleotidase (5'-NT), two metabolic enzymes essential for PSP activity, were promptly degraded by OA via the lysosome pathway. Mechanistically, OA selectively targeted superoxide dismutase 1 (SOD1) and yielded reactive oxygen species (ROS) to activate the AMP-activated protein kinase (AMPK)/mammalian target of rapamycin complex 1 (mTORC1)/macroautophagy pathway, thus eliciting lysosomal degradation of HGPRT and 5'-NT. Furthermore, we found that the PSP was overactivated in human lung and breast cancers, with a negative correlation with patient survival. The results of this study elucidated a new anti-cancer mechanism of OA by restraining the PSP via the SOD1/ROS/AMPK/mTORC1/macroautophagy/lysosomal pathway. We also identified the PSP as a new target for cancer treatment and highlighted OA as a potential therapeutic agent for cancers with high PSP activity.

12.
Clin Transl Med ; 11(9): e538, 2021 09.
Article in English | MEDLINE | ID: mdl-34586744

ABSTRACT

Esophageal squamous cell carcinoma (ESCC) is a major histological subtype of esophageal cancer with inferior prognosis. Here, we conducted comprehensive transcriptomic, proteomic, phosphoproteomic, and metabolomic characterization of human, treatment-naive ESCC and paired normal adjacent tissues (cohort 1, n = 24) in an effort to identify new molecular vulnerabilities for ESCC and potential therapeutic targets. Integrative analysis revealed a small group of genes that were related to the active posttranscriptional and posttranslational regulation of ESCC. By using proteomic, phosphoproteomic, and metabolomic data, networks of ESCC-related signaling and metabolic pathways that were closely linked to cancer etiology were unraveled. Notably, integrative analysis of proteomic and phosphoproteomic data pinpointed that certain pathways involved in RNA transcription, processing, and metabolism were stimulated in ESCC. Importantly, proteins with close linkage to ESCC prognosis were identified. By enrolling an ESCC patient cohort 2 (n = 41), three top-ranked prognostic proteins X-prolyl aminopeptidase 3 (XPNPEP3), bromodomain PHD finger transcription factor (BPTF), and fibrillarin (FBL) were verified to have increased expression in ESCC. Among these prognostic proteins, only FBL, a well-known nucleolar methyltransferase, was essential for ESCC cell growth in vitro and in vivo. Furthermore, a validation study using an ESCC patient cohort 3 (n = 100) demonstrated that high FBL expression predicted unfavorable patient survival. Finally, common cancer/testis antigens and established cancer drivers and kinases, all of which could direct therapeutic decisions, were characterized. Collectively, our multi-omics analyses delineated new molecular features associated with ESCC pathobiology involving epigenetic, posttranscriptional, posttranslational, and metabolic characteristics, and unveiled new molecular vulnerabilities with therapeutic potential for ESCC.


Subject(s)
Computational Biology/methods , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Proteome/genetics , Transcriptome/genetics , Esophageal Neoplasms/genetics , Esophageal Neoplasms/metabolism , Esophageal Neoplasms/therapy , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/metabolism , Esophageal Squamous Cell Carcinoma/therapy , Gene Expression Profiling , Humans , Proteomics
14.
Front Cell Dev Biol ; 9: 618899, 2021.
Article in English | MEDLINE | ID: mdl-33644057

ABSTRACT

Cisplatin is an important agent in first-line chemotherapy against gastric cancer (GC). However, consequential drug resistance limits its effectiveness for the treatment of GC. In this study, a cisplatin resistant gastric cancer cell line SGC7901R was determined by LC-MS/MS with increased exosomal levels of RPS3 protein. SGC7901R cell-derived exosomes were readily taken up by cisplatin-sensitive SGC7901S cells, thus triggering off a phenotype of chemoresistance in the receptor cells. Subsequently, it was demonstrated that exosomal RPS3 was essential for inducing chemoresistance of receptor cells as shown by the acquisition of this phenotype in SGC7901S cells with enforced expression of RPS3. Further mechanism study demonstrated that cisplatin-resistant gastric cancer cell-derived exosomal RPS3 enhanced the chemoresistance of cisplatin-sensitive gastric cancer cells through the PI3K-Akt-cofilin-1 signaling pathway. All these findings demonstrated that cisplatin-resistant gastric cancer cells communicate with sensitive cells through the intercellular delivery of exosomal RPS3 and activation of the PI3K-Akt-cofilin-1 signaling pathway. Targeting exosomal RPS3 protein in cisplatin-resistant gastric cancer cells may thus be a promising strategy to overcome cisplatin resistance in gastric cancer.

15.
Signal Transduct Target Ther ; 5(1): 177, 2020 09 02.
Article in English | MEDLINE | ID: mdl-32873793

ABSTRACT

Cancer cells are usually characterized by hyperactive glucose metabolism, which can often lead to glucose scarcity; thus, alternative pathways to rewire cancer metabolism are required. Here, we demonstrated that GLUT3 was highly expressed in colorectal cancer (CRC) and negatively linked to CRC patient outcomes, whereas GLUT1 was not associated with CRC prognosis. Under glucose-limiting conditions, GLUT3 expedited CRC cell growth by accelerating glucose input and fuelling nucleotide synthesis. Notably, GLUT3 had a greater impact on cell growth than GLUT1 under glucose-limiting stress. Mechanistically, low-glucose stress dramatically upregulated GLUT3 via the AMPK/CREB1 pathway. Furthermore, high GLUT3 expression remarkably increased the sensitivity of CRC cells to treatment with vitamin C and vitamin C-containing regimens. Together, the results of this study highlight the importance of the AMPK/CREB1/GLUT3 pathway for CRC cells to withstand glucose-limiting stress and underscore the therapeutic potential of vitamin C in CRC with high GLUT3 expression.


Subject(s)
Colorectal Neoplasms/genetics , Cyclic AMP Response Element-Binding Protein/genetics , Glucose Transporter Type 1/genetics , Glucose Transporter Type 3/genetics , Protein Kinases/genetics , AMP-Activated Protein Kinase Kinases , Animals , Cell Proliferation/genetics , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/pathology , Colorectal Neoplasms/pathology , Gene Expression Regulation, Neoplastic/genetics , Glucose/metabolism , HCT116 Cells , Humans , Mice , Oxaliplatin/pharmacology , Xenograft Model Antitumor Assays
16.
Sci Rep ; 10(1): 11601, 2020 07 14.
Article in English | MEDLINE | ID: mdl-32665615

ABSTRACT

Bile acids (BAs) play essential roles in facilitating lipid digestion and absorption in the intestine. Gastric BAs were attributed to abnormal refluxing from duodenal compartments and correlated with the occurrence of gastric inflammation and carcinogenesis. However, the differences in gastric BAs between physiologically compromised and healthy individuals have not been fully investigated. In this study, gastric juice was collected from patients clinically diagnosed as gastritis with/without bile reflux and healthy subjects for BA profiles measurements. As a result, we found that the conjugated BAs became prominent components in bile reflux juice, whereas almost equal amounts of conjugated and unconjugated BAs existed in non-bile reflux and healthy juice. To investigate whether gastric BA changes were regulated by hepatic BA synthesis, C57BL/6J mice were intervened with GW4064/resin to decrease/increase hepatic BA synthesis. The results revealed that changes of gastric BAs were coordinated with hepatic BA changes. Additionally, gastric BAs were detected in several healthy mammals, in which there were no obvious differences between the conjugated and unconjugated BAs. Pigs were an exception. Thus, increased levels of conjugated BAs are associated with human bile reflux gastritis. Gastric conjugated BAs could become a panel of biomarkers to facilitate diagnosis of pathological bile reflux.


Subject(s)
Bile Acids and Salts/metabolism , Bile Reflux/metabolism , Gastritis/metabolism , Liver/metabolism , Animals , Bile Acids and Salts/biosynthesis , Bile Reflux/genetics , Bile Reflux/pathology , Digestion/physiology , Disease Models, Animal , Gastric Juice/metabolism , Gastritis/pathology , Humans , Intestinal Mucosa/metabolism , Intestines/pathology , Isoxazoles/pharmacology , Lipids/chemistry , Mice
17.
Signal Transduct Target Ther ; 5(1): 42, 2020 04 24.
Article in English | MEDLINE | ID: mdl-32327643

ABSTRACT

Tumor necrosis factor alpha-induced protein 1 (TNFAIP1) modulates a plethora of important biological processes, including tumorigenesis and cancer cell migration. However, the regulatory mechanism of TNFAIP1 degradation remains largely elusive. In the present study, with a label-free quantitative proteomic approach, TNFAIP1 was identified as a novel ubiquitin target of the Cullin-RING E3 ubiquitin ligase (CRL) complex. More importantly, Cul3-ROC1 (CRL3), a subfamily of CRLs, was identified to specifically interact with TNFAIP1 and promote its polyubiquitination and degradation. Mechanistically, BTBD9, a specific adaptor component of CRL3 complex, was further defined to bind and promote the ubiquitination and degradation of TNFAIP1 in cells. As such, downregulation of BTBD9 promoted lung cancer cell migration by upregulating the expression of TNFAIP1, whereas TNFAIP1 deletion abrogated this effect. Finally, bioinformatics and clinical sample analyses revealed that BTBD9 was downregulated while TNFAIP1 was overexpressed in human lung cancer, which was associated with poor overall survival of patients. Taken together, these findings reveal a previously unrecognized mechanism by which the CRL3BTBD9 ubiquitin ligase controls TNFAIP1 degradation to regulate cancer cell migration.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Carcinogenesis/genetics , Neoplasms/genetics , Nerve Tissue Proteins/genetics , Ubiquitin-Protein Ligases/genetics , Cell Movement/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic/genetics , Hep G2 Cells , Humans , Multiprotein Complexes , Neoplasms/pathology , Proteolysis , Proteomics , Ubiquitination/genetics
18.
JCI Insight ; 5(3)2020 02 13.
Article in English | MEDLINE | ID: mdl-32051337

ABSTRACT

Lung cancer (LC) is a leading cause of cancer-related deaths worldwide. Its rapid growth requires hyperactive catabolism of principal metabolic fuels. It is unclear whether fructose, an abundant sugar in current diets, is essential for LC. We demonstrated that, under the condition of coexistence of metabolic fuels in the body, fructose was readily used by LC cells in vivo as a glucose alternative via upregulating GLUT5, a major fructose transporter encoded by solute carrier family 2 member 5 (SLC2A5). Metabolomic profiling coupled with isotope tracing demonstrated that incorporated fructose was catabolized to fuel fatty acid synthesis and palmitoleic acid generation in particular to expedite LC growth in vivo. Both in vitro and in vivo supplement of palmitoleic acid could restore impaired LC propagation caused by SLC2A5 deletion. Furthermore, molecular mechanism investigation revealed that GLUT5-mediated fructose utilization was required to suppress AMPK and consequently activate mTORC1 activity to promote LC growth. As such, pharmacological blockade of in vivo fructose utilization using a GLUT5 inhibitor remarkably curtailed LC growth. Together, this study underscores the importance of in vivo fructose utilization mediated by GLUT5 in governing LC growth and highlights a promising strategy to treat LC by targeting GLUT5 to eliminate those fructose-addicted neoplastic cells.


Subject(s)
Adenylate Kinase/metabolism , Fatty Acids/biosynthesis , Fructose/metabolism , Glucose Transporter Type 5/metabolism , Lung Neoplasms/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Signal Transduction , A549 Cells , Adenocarcinoma/enzymology , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Animals , Carcinoma, Squamous Cell/enzymology , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Cell Proliferation , Cohort Studies , Glucose/metabolism , Heterografts , Humans , Lung Neoplasms/enzymology , Lung Neoplasms/pathology , Mice , Mice, Nude , Survival Analysis
19.
Cell Biol Toxicol ; 36(4): 349-364, 2020 08.
Article in English | MEDLINE | ID: mdl-31907687

ABSTRACT

Protein neddylation, a process of conjugating neural precursor cell expressed, developmentally downregulated 8 (NEDD8) to substrates, plays a tumor-promoting role in lung carcinogenesis. Our previous study showed MLN4924, an inhibitor of NEDD8 activating enzyme (E1), significantly inhibits the growth of multiple cancer cells. However, resistance can develop to MLN4924 by mutation. Therefore, it is important to further understand how NEDD8 acts in lung cancer. In the present study, we demonstrated NEDD8 is overactivated in lung cancers and confers a worse patient overall survival. Furthermore, we report that in lung adenocarcinoma cells, NEDD8 depletion significantly suppressed lung cancer cell growth and progression both in vitro and in vivo. Mechanistic studies revealed that NEDD8 depletion induced the accumulation of a panel of tumor-suppressive cullin-RING ubiquitin ligase substrates (e.g., p21, p27, and Wee1) via blocking their degradation, triggering cell cycle arrest at G2 phase, thus inducing apoptosis or senescence in a cell-line-dependent manner. The present study demonstrates the role of NEDD8 in regulating the malignant phenotypes of lung cancer cells and further validates NEDD8 as a potential therapeutic target in lung cancer.


Subject(s)
Adenocarcinoma of Lung/drug therapy , Lung Neoplasms/metabolism , NEDD8 Protein/metabolism , Adenocarcinoma of Lung/metabolism , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cyclopentanes/pharmacology , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Pyrimidines/pharmacology , Signal Transduction/drug effects , Ubiquitin/metabolism
20.
Cell Biol Toxicol ; 35(5): 471-483, 2019 10.
Article in English | MEDLINE | ID: mdl-31102011

ABSTRACT

Fructose is an important alternative carbon source for several tumors, and GLUT5 is the major fructose transporter which mediates most of fructose uptake in cells. So far, it is unclear whether GLUT5-mediated fructose utilization is important for clear cell renal cell carcinoma (ccRCC). Here, we demonstrated that GLUT5 was highly expressed in a panel of ccRCC cell lines. High GLUT5 expression exacerbated the neoplastic phenotypes of ccRCC cells, including cell proliferation and colony formation. On the other hand, deletion of the GLUT5-encoding gene SLC2A5 dramatically attenuated cellular malignancy via activating the apoptotic pathway. Moreover, administration of 2,5-anhydro-D-mannitol (2,5-AM), a competitive inhibitor of fructose uptake, could markedly suppress ccRCC cell growth. Together, we provide a new mechanistic insight for GLUT5-mediated fructose utilization in ccRCC cells and highlight the therapeutic potential for targeting this metabolic pathway against ccRCC.


Subject(s)
Carcinoma, Renal Cell/metabolism , Fructose/metabolism , Glucose Transporter Type 5/metabolism , Kidney Neoplasms/metabolism , Animals , Apoptosis/drug effects , Apoptosis/physiology , Biological Transport , Carcinoma, Renal Cell/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Proliferation/physiology , Female , Fructose/antagonists & inhibitors , HEK293 Cells , Heterografts , Humans , Kidney Neoplasms/pathology , Mannitol/analogs & derivatives , Mannitol/pharmacology , Mice , Mice, Inbred BALB C , RNA, Messenger/genetics , RNA, Messenger/metabolism , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...