Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
ACS Sens ; 8(12): 4696-4706, 2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38084058

ABSTRACT

Simple and fast detection of small molecules is critical for health and environmental monitoring. Methods for chemical detection often use mass spectrometers or enzymes; the former relies on expensive equipment, and the latter is limited to those that can act as enzyme substrates. Affinity reagents like antibodies can target a variety of small-molecule analytes, but the detection requires the successful design of chemically conjugated targets or analogs for competitive binding assays. Here, we developed a generalizable method for the highly sensitive and specific in-solution detection of small molecules, using cannabidiol (CBD) as an example. Our sensing platform uses gold nanoparticles (AuNPs) functionalized with a pair of chemically induced dimerization (CID) nanobody binders (nanobinders), where CID triggers AuNP aggregation and sedimentation in the presence of CBD. Despite moderate binding affinities of the two nanobinders to CBD (equilibrium dissociation constants KD of ∼6 and ∼56 µM), a scheme consisting of CBD-AuNP preanalytical incubation, centrifugation, and electronic detection (ICED) was devised to demonstrate a high sensitivity (limit of detection of ∼100 picomolar) in urine and saliva, a relatively short sensing time (∼2 h), a large dynamic range (5 logs), and a sufficiently high specificity to differentiate CBD from its analog, tetrahydrocannabinol. The high sensing performance was achieved with the multivalency of AuNP sensing, the ICED scheme that increases analyte concentrations in a small assay volume, and a portable electronic detector. This sensing system is readily applicable for wide molecular diagnostic applications.


Subject(s)
Cannabidiol , Metal Nanoparticles , Gold/chemistry , Dimerization , Metal Nanoparticles/chemistry , Antibodies
2.
bioRxiv ; 2023 Sep 17.
Article in English | MEDLINE | ID: mdl-37745324

ABSTRACT

Simple and fast detection of small molecules is critical to health and environmental monitoring. Methods for chemical detection often use mass spectrometers or enzymes; the former relies on expensive equipment and the latter is limited to those that can act as enzyme substrates. Affinity reagents like antibodies can target a variety of small-molecule analytes, but the detection requires successful design of chemically conjugated targets or analogs for competitive binding assays. Here, we developed a generalizable method for highly sensitive and specific in-solution detection of small molecules, using cannabidiol (CBD) as an example. Our sensing platform uses gold nanoparticles (AuNPs) functionalized with a pair of chemically induced dimerization (CID) nanobody binders (nano-binders), where CID triggers AuNPs aggregation and sedimentation in the presence of CBD. Despite moderate binding affinities of the two nano-binders to CBD (KDs of ~6 and ~56 µM), a scheme consisting of CBD-AuNP pre-analytical incubation, centrifugation, and electronic detection (ICED) was devised to demonstrate a high sensitivity (limit of detection of ~100 picomolar) in urine and saliva, a relatively short assay time (~2 hours), a large dynamic range (5 logs), and a sufficiently high specificity to differentiate CBD from its analog, tetrahydrocannabinol. The high sensing performance was achieved with the multivalency of AuNP sensing, the ICED scheme that increases analyte concentrations in a small assay volume, and a portable electronic detector. This sensing system is readily coupled to other binders for wide molecular diagnostic applications.

3.
Light Sci Appl ; 12(1): 218, 2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37673857

ABSTRACT

Polarimetric imaging has a wide range of applications for uncovering features invisible to human eyes and conventional imaging sensors. Chip-integrated, fast, cost-effective, and accurate full-Stokes polarimetric imaging sensors are highly desirable in many applications, which, however, remain elusive due to fundamental material limitations. Here we present a chip-integrated Metasurface-based Full-Stokes Polarimetric Imaging sensor (MetaPolarIm) realized by integrating an ultrathin (~600 nm) metasurface polarization filter array (MPFA) onto a visible imaging sensor with CMOS compatible fabrication processes. The MPFA is featured with broadband dielectric-metal hybrid chiral metasurfaces and double-layer nanograting polarizers. This chip-integrated polarimetric imaging sensor enables single-shot full-Stokes imaging (speed limited by the CMOS imager) with the most compact form factor, records high measurement accuracy, dual-color operation (green and red) and a field of view up to 40 degrees. MetaPolarIm holds great promise to enable transformative applications in autonomous vision, industry inspection, space exploration, medical imaging and diagnosis.

4.
Biosens Bioelectron ; 202: 113971, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35051851

ABSTRACT

Successful control of emerging infectious diseases requires accelerated development of fast, affordable, and accessible assays for wide implementation at a high frequency. This paper presents a design for an in-solution assay pipeline, featuring nanobody-functionalized nanoparticles for rapid, electronic detection (Nano2RED) of Ebola and COVID-19 antigens. Synthetic nanobody binders with high affinity, specificity, and stability are selected from a combinatorial library and site-specifically conjugated to gold nanoparticles (AuNPs). Without requiring any fluorescent labelling, washing, or enzymatic amplification, these multivalent AuNP sensors reliably transduce antigen binding signals upon mixing into physical AuNP aggregation and sedimentation processes, displaying antigen-dependent optical extinction readily detectable by spectrometry or portable electronic circuitry. With Ebola virus secreted glycoprotein (sGP) and a SARS-CoV-2 spike protein receptor binding domain (RBD) as targets, Nano2RED showed a high sensitivity (the limit of detection of ∼10 pg /mL, or 0.13 pM for sGP and ∼40 pg/mL, or ∼1.3 pM for RBD in diluted human serum), a high specificity, a large dynamic range (∼7 logs),and fast readout within minutes. The rapid detection, low material cost (estimated <$0.01 per test), inexpensive and portable readout system (estimated <$5), and digital data output, make Nano2RED a particularly accessible assay in screening of patient samples towards successful control of infectious diseases.


Subject(s)
Antigens, Viral/analysis , Biosensing Techniques , COVID-19 , Metal Nanoparticles , Biosensing Techniques/methods , Ebolavirus , Glycoproteins , Gold/chemistry , Humans , Metal Nanoparticles/chemistry , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Viral Proteins
5.
Langmuir ; 37(2): 894-907, 2021 Jan 19.
Article in English | MEDLINE | ID: mdl-33400541

ABSTRACT

An interfacial structure is crucial to the photoinduced electron transport for a heterostructure photocatalyst. Constructing an interfacial electron channel with an optimized interfacial structure can efficiently improve the electron-transfer efficiency. Herein, the rapid electron-transfer channels were built up in a Cu2O/SrFe0.5Ta0.5O3 heterojunction (Cu2O/SFTO) based on the selective bonding effect of heterologous surface oxygen vacancies in the SFTO component. The heterologous surface oxygen vacancies, namely, VO-Fe and VO-Ta, respectively, adjacent to Fe and Ta atoms, were introduced into fabricating the Z-scheme Cu2O/SFTO heterojunction. Compared with sample Cu2O/SFTO with VO-Fe, the photocatalytic NO removal efficiency of sample Cu2O/SFTO with VO-Fe and VO-Ta was increased by 22.5%. The enhanced photocatalytic performance originated from the selective bonding effect of heterologous VO-Fe and VO-Ta on the interfacial electron-separating and -transfer efficiency. VO-Fe is the main body to construct the interfacial electron-transfer channels by forming interfacial Fe-O-Cu(I) bonds, which causes lattice distortion at the interface, and VO-Ta can optimize the structure of interfacial channels by balancing the electron density of SFTO to control the average space of the interface transition zone. This research provides a new cognitive perspective for constructing double perovskite oxide-based heterostructure photocatalysts.

6.
Biosens Bioelectron ; 174: 112829, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33308962

ABSTRACT

Solid-state nanopores have broad applications from single-molecule biosensing to diagnostics and sequencing. The high capacitive noise from conventionally used conductive silicon substrates, however, has seriously limited both their sensing accuracy and recording speed. A new approach is proposed here for forming nanopore membranes on insulating sapphire wafers to promote low-noise nanopore sensing. Anisotropic wet etching of sapphire through micro-patterned triangular masks is used to demonstrate the feasibility of scalable formation of small (<25 µm) membranes with a size deviation of less than 7 µm over two 2-inch wafers. For validation, a sapphire-supported (SaS) nanopore chip with a 100 times larger membrane area than conventional nanopores was tested, which showed 130 times smaller capacitance (10 pF) and 2.6 times smaller root-mean-square (RMS) noise current (18-21 pA over 100 kHz bandwidth, with 50-150 mV bias) when compared to a silicon-supported (SiS) nanopore (~1.3 nF, and 46-51 pA RMS noise). Tested with 1k base-pair double-stranded DNA, the SaS nanopore enabled sensing at microsecond speed with a signal-to-noise ratio of 21, compared to 11 from a SiS nanopore. This SaS nanopore presents a manufacturable nanoelectronic platform feasible for high-speed and low-noise sensing of a variety of biomolecules.


Subject(s)
Biosensing Techniques , Nanopores , Aluminum Oxide , DNA , Nanotechnology
7.
Light Sci Appl ; 8: 78, 2019.
Article in English | MEDLINE | ID: mdl-31645924

ABSTRACT

The manipulation and characterization of light polarization states are essential for many applications in quantum communication and computing, spectroscopy, bioinspired navigation, and imaging. Chiral metamaterials and metasurfaces facilitate ultracompact devices for circularly polarized light generation, manipulation, and detection. Herein, we report bioinspired chiral metasurfaces with both strong chiral optical effects and low insertion loss. We experimentally demonstrated submicron-thick circularly polarized light filters with peak extinction ratios up to 35 and maximum transmission efficiencies close to 80% at near-infrared wavelengths (the best operational wavelengths can be engineered in the range of 1.3-1.6 µm). We also monolithically integrated the microscale circular polarization filters with linear polarization filters to perform full-Stokes polarimetric measurements of light with arbitrary polarization states. With the advantages of easy on-chip integration, ultracompact footprints, scalability, and broad wavelength coverage, our designs hold great promise for facilitating chip-integrated polarimeters and polarimetric imaging systems for quantum-based optical computing and information processing, circular dichroism spectroscopy, biomedical diagnosis, and remote sensing applications.

8.
ACS Appl Mater Interfaces ; 10(3): 2868-2873, 2018 Jan 24.
Article in English | MEDLINE | ID: mdl-29271633

ABSTRACT

Traditional CO2 sensing technologies suffer from the disadvantages of being bulky and cross-sensitive to interferences such as CO and H2O, these issues could be properly tackled by innovating a novel fluorescence-based sensing technology. Metal-organic frameworks (MOFs), which have been widely explored as versatile fluorescence sensors, are still at a standstill for aggregation-induced emission (AIE), and no example of MOFs showing a dynamic AIE activity has been reported yet. Herein, we report a novel MOF, which successfully converts the aggregation-caused quenching of the autologous ligand molecule to be AIE-active upon framework construction and exhibits bright fluorescence in a highly viscous environment, resulting in the first example of MOFs exhibiting a real dynamic AIE activity. Furthermore, a linear CO2 fluorescence quantification for mixed gases in the concentration range of 2.5-100% was thus well-established. These results herald the understanding and advent of a new generation in all solid-state fluorescence fields.

9.
ACS Nano ; 11(8): 8034-8046, 2017 08 22.
Article in English | MEDLINE | ID: mdl-28693314

ABSTRACT

Here we report an infrared plasmonic nanosensor for label-free, sensitive, specific, and quantitative identification of nanometer-sized molecules. The device design is based on vertically coupled complementary antennas (VCCAs) with densely patterned hot-spots. The elevated metallic nanobars and complementary nanoslits in the substrate strongly couple at vertical nanogaps between them, resulting in dual-mode sensing dependent on the light polarization parallel or perpendicular to the nanobars. We demonstrate experimentally that a monolayer of octadecanethiol (ODT) molecules (thickness 2.5 nm) leads to significant antenna resonance wavelength shift over 136 nm in the parallel mode, corresponding to 7.5 nm for each carbon atom in the molecular chain or 54 nm for each nanometer in analyte thickness. Additionally, all four characteristic vibrational fingerprint signals, including the weak CH3 modes, are clearly delineated experimentally in both sensing modes. Such a dual-mode sensing with a broad wavelength design range (2.5 to 4.5 µm) is potentially useful for multianalyte detection. Additionally, we create a mathematical algorithm to design gold nanoparticles on VCCA sensors in simulation with their morphologies statistically identical to those in experiments and systematically investigate the impact of the nanoparticle morphology on the nanosensor performance. The nanoparticles form dense hot-spots, promote molecular adsorption, enhance near-field intensity 103 to 104 times, and improve ODT refractometric and fingerprint sensitivities. Our VCCA sensor structure offers a great design flexibility, dual-mode operation, and high detection sensitivity, making it feasible for broad applications from biomarker detection to environment monitoring and energy harvesting.

10.
Anticancer Agents Med Chem ; 16(8): 973-991, 2016.
Article in English | MEDLINE | ID: mdl-26961317

ABSTRACT

The metal-based drugs have gained increasing attention in the fight against cancer. Ga(III) in the form of inorganic salts has demonstrated efficacy in the treatment of a number of malignancies in experimental animals and humans, and has therefore attracted considerable pharmaceutical interest. However, the poor hydrolytic stability of Ga(III) in physiological medium owing to its property of hard Lewis acid prevents its widespread use in systemic cancer chemotherapy. Complexation of suitable chelators capable of stabilising Ga(III) against hydrolysis affords an opportunity for overcoming this drawback. Thiosemicarbazone (TSC) derivatives, a class of well-studied iron chelators featuring softer donor sulfur, also were evaluated to possess antineoplastic activities in an arrary of tumour cell lines. The structural modifications can affect the activities of TSCs, and related structure-activity relationships (SAR) have been studied over these years. Combination of Ga(III) and TSCs that are both pharmaceutically active has proved to exert synergistic effects of each component in one compound in most cases, and may produce more potent Ga(III) drugs. In this review, the SAR of α(N)-heterocyclic thiosemicarbazone (HCT) analogues, a family of TSCs, were scrupulously surveyed, and the effect of Ga(III) complexation on their anticancer activity sparsely reported in literature was comparatively examined, in order to stimulate further advances in the field of gallium-based anticancer drugs.

11.
Gene ; 563(1): 72-5, 2015 May 25.
Article in English | MEDLINE | ID: mdl-25752286

ABSTRACT

We report the case of a patient with a clinical phenotype consistent with Down Syndrome (DS) who has a novel karyotypic abnormality. Karyotypic analyses were performed to investigate the cause of two spontaneous abortions. A balanced translocation between chromosomes 4 and 21 was identified, along with an additional abnormal chromosome 21. We performed high-resolution banding, comparative genomic hybridization (CGH), and FISH studies in both the patient and her mother to define the abnormality and determine its origin. CGH revealed a gain in copy number on the long arm of chromosome 4, spanning at least 24.4 Mb, and a gain in copy number on the long arm of chromosome 21, spanning at least 16.2 Mb. FISH analysis using a chromosome 21 centromere probe and chromosome 4 long arm telomere (4pter) probe confirmed the origin of the marker chromosome. It has been confirmed by the State Key Laboratory of Medical Genetics of China that this is the first reported instance of the karyotype 47,XX,t(4;21)(q31.3;q11.2),+der(21)t(4;21)mat reported in the world.


Subject(s)
Down Syndrome/genetics , Intellectual Disability/genetics , Trisomy/genetics , Abortion, Spontaneous/genetics , Chromosomes, Human, Pair 4/genetics , Comparative Genomic Hybridization , Female , Humans , In Situ Hybridization, Fluorescence , Karyotyping , Recombination, Genetic , Young Adult
12.
Acta Crystallogr Sect E Struct Rep Online ; 69(Pt 2): o229, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23424509

ABSTRACT

The title compound, C(10)H(13)ClN(2)O, was obtained as a by-product in the reaction of 2-chloro-methyl-1H-benzimidazole, dimethyl sulfate and toluene to synthesise 2-chloro-methyl-1-methyl-benzimidazole. The dihedral angle between the benzene ring and the acetamide group is 89.72  (6)° while that between the aromatic ring and the chloracetyl group is 84.40 (4)°. In the crystal, adjacent mol-ecules are linked by pairs of N-H⋯O hydrogen bonds into inversion dimers.

SELECTION OF CITATIONS
SEARCH DETAIL
...