Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Med Sci Sports Exerc ; 56(1): 143-154, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37586104

ABSTRACT

PURPOSE: The number of persons living with post-coronavirus disease 2019 (COVID-19) conditions or long COVID continues to rise worldwide; however, the etiology and the treatment of long COVID remain nebulous. Therefore, efficient, feasible, and cost-effective therapeutic strategies for a large population with long COVID remain warranted. Physical exercise-based rehabilitation is a promising strategy for long COVID, although its therapeutic effects remain to be determined. This systematic review and meta-analysis aimed to examine the effects of physical exercise-based rehabilitation on long COVID. METHODS: The electronic databases Medline, Embase, Global Health (Ovid), CINAHL (EBSCO), Web of Science, WHO Global Research Database on COVID-19, LitCovid, and Google Scholar were searched from their inception to November 2022. The identified articles were independently screened by three reviewers, and a random-effects model was used to determine the mean differences in the meta-analysis. RESULTS: Twenty-three studies involving 1579 individuals who had COVID-19 (752 women) were included. Physical exercise-based rehabilitation showed beneficial effects on long COVID-related symptoms characterized by dyspnea, fatigue, and depression, as well as on the 6-min walk test, forced expiratory volume in 1 s/forced vital capacity, and quality of life in people who had COVID-19. CONCLUSIONS: Physical exercise-based rehabilitation is a potential therapeutic strategy against long COVID and can be applied as a routine clinical practice in people who have recovered from COVID-19. However, customized physical exercise-based rehabilitation programs and their effects on specific types of long COVID require future large-scale studies.


Subject(s)
COVID-19 , Quality of Life , Humans , Female , Post-Acute COVID-19 Syndrome , Exercise Therapy , Exercise
2.
Am J Med ; 2023 Dec 17.
Article in English | MEDLINE | ID: mdl-38110069

ABSTRACT

BACKGROUND: Evidence suggests that coronavirus disease 2019 (COVID-19) survivors could experience COVID-19 sequelae. Although various risk factors for COVID-19 sequelae have been identified, little is known about whether a sedentary lifestyle is an independent risk factor. METHODS: In this retrospective cohort study, 4850 participants self-reported their COVID-19 sequelae symptoms between June and August 2022. A sedentary lifestyle included physical inactivity (<150 min/week of moderate-to-vigorous intensity physical activity) and prolonged sedentary behavior (≥10 h/day) before the fifth COVID-19 wave was recorded. Logistic regression analysis was performed to determine the relationships between sedentary lifestyle and risk of acute and post-acute (lasting ≥2 months) COVID-19 sequelae. RESULTS: A total of 1443 COVID-19 survivors and 2962 non-COVID-19 controls were included. Of the COVID-19 survivors, >80% and >40% self-reported acute and post-acute COVID-19 sequelae, respectively. In the post-acute phase, COVID-19 survivors who were physically inactive had a 37% lower risk of insomnia, whereas those with prolonged sedentary behavior had 25%, 67%, and 117% higher risks of at least one symptom, dizziness, and "pins and needles" sensation, respectively. For the acute phase, prolonged sedentary behavior was associated with a higher risk of fatigue, "brain fog," dyspnea, muscle pain, joint pain, dizziness, and "pins and needles" sensation. Notably, sedentary behavior, rather than physical inactivity, was correlated with a higher risk of severe post-COVID-19 sequelae in both acute and post-acute phases. CONCLUSIONS: Prolonged sedentary behavior was independently associated with a higher risk of both acute and post-acute COVID-19 sequelae, whereas physical inactivity played contradictory roles in COVID-19 sequelae.

3.
J Sports Sci ; 41(16): 1547-1557, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37963176

ABSTRACT

Increasing daily physical activity (PA) is a practical way to decrease the risk of cardiometabolic diseases, while the studies on exercise intensity remain limited. The purpose of the present study was to compare the effects of increasing light PA (LPA) or moderate-to-vigorous PA (MVPA) for 12 weeks on cardiometabolic markers in Chinese adults with obesity. Fifty-three adults were randomly assigned to the 1) control group, 2) LPA group, and 3) MVPA group in free-living settings. The intervention effects on body composition, cardiorespiratory fitness, and cardiometabolic biomarkers were analysed using a generalized estimated equation model adjusted for baseline values and potential confounders. Compared with the control group, the MVPA group showed improvements in body composition, lipids, C-peptide, monocyte chemoattractant protein-1 (MCP-1), interleukin-8, leptin, and E-selectin. A favourable change in triglycerides and E-selectin were observed in the LPA group when compared to the control group. Lastly, improvements in waist circumference, C-reactive protein, and MCP-1 were observed in the MVPA group when compared to those in the LPA group. Although increasing both LPA and MVPA improved certain cardiometabolic biomarkers, the latter may have more benefits. These findings imply that MVPA may reduce cardiometabolic disease risk more effectively than LPA, especially in Chinese adults with obesity.


Subject(s)
Cardiovascular Diseases , E-Selectin , Adult , Humans , Sedentary Behavior , Obesity , Exercise , Cardiovascular Diseases/prevention & control , Biomarkers , China , Waist Circumference
4.
Autophagy ; : 1-17, 2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37921505

ABSTRACT

Despite the well-described discrepancy between ATG (macroautophagy/autophagy-related) genes in the regulation of hematopoiesis, varying essentiality of core ATG proteins in vertebrate definitive hematopoiesis remains largely unclear. Here, we employed zebrafish (Danio rerio) to compare the functions of six core atg genes, including atg13, becn1 (beclin1), atg9a, atg2a, atg5, and atg3, in vertebrate definitive hematopoiesis via clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 ribonucleoprotein and morpholino targeting. Zebrafish with various atg mutations showed autophagic deficiency and presented partially consistent hematopoietic abnormalities during early development. All six atg mutations led to a declined number of spi1b+ (Spi-1 proto-oncogene b) myeloid progenitor cells. However, only becn1 mutation resulted in the expansion of myb+ (v-myb avian myeloblastosis viral oncogene homolog) hematopoietic stem and progenitor cells (HSPCs) and transiently increased coro1a+ (coronin, actin binding protein, 1A) leukocytes, whereas atg3 mutation decreased the number of HSPCs and leukocytes. Proteomic analysis of caudal hematopoietic tissue identified sin3aa (SIN3 transcription regulator family member Aa) as a potential modulator of atg13- and becn1-regulated definitive hematopoiesis. Disruption of sin3aa rescued the expansion of HSPCs and leukocytes in becn1 mutants and exacerbated the decrease of HSPCs in atg13 mutants. Double mutations were also performed to examine alternative functions of various atg genes in definitive hematopoiesis. Notably, becn1 mutation failed to induce HSPCs expansion with one of the other five atg mutations. These findings demonstrated the distinct roles of atg genes and their interplays in zebrafish definitive hematopoiesis, thereby suggesting that the vertebrate definitive hematopoiesis is regulated in an atg gene-dependent manner.Abbreviations: AGM: aorta-gonad-mesonephros; AO: acridine orange; atg: autophagy related; becn1: beclin 1, autophagy related; CHT: caudal hematopoietic tissue; CKO: conditional knockout; coro1a: coronin, actin binding protein, 1A; CQ: chloroquine; CRISPR: clustered regularly interspaced short palindromic repeats; dpf: days post fertilization; FACS: fluorescence-activated cell sorting; hbae1.1: hemoglobin, alpha embryonic 1.1; HSCs: hematopoietic stem cells; HSPCs: hematopoietic stem and progenitor cells; KD: knockdown; KO: knockout; map1lc3/lc3: microtubule-associated protein 1 light chain 3; MO: morpholino; mpeg1.1: macrophage expressed 1, tandem duplicate 1; mpx: myeloid-specific peroxidase; myb: v-myb avian myeloblastosis viral oncogene homolog; PE: phosphatidylethanolamine; p-H3: phospho-H3 histone; PtdIns3K: class 3 phosphatidylinositol 3-kinase; rag1: recombination activating 1; rb1cc1/fip200: RB1-inducible coiled-coil 1; RFLP: restriction fragment length polymorphism; RNP: ribonucleoprotein; sin3aa: SIN3 transcription regulator family member Aa; spi1b: Spi-1 proto-oncogene b; ulk: unc-51 like autophagy activating kinase; vtg1: vitellogenin 1; WISH: whole-mount in situ hybridization.

5.
Aging (Albany NY) ; 14(24): 10137-10152, 2022 12 29.
Article in English | MEDLINE | ID: mdl-36585923

ABSTRACT

Despite the well-known senolytic effects of physical exercise on immune cells in older adults, the effect of physical activity (PA) on premature immune senescence in sedentary adults with obesity remains largely unknown. This pilot study aimed to investigate the role of objectively measured physical behaviors and Fitbit watch-based free-living PA intervention in premature senescence of immune cells in sedentary adults with obesity. Forty-five participants were recruited in the cross-sectional analysis, and forty of them further participated in the randomized controlled trial. We found that objectively measured moderate-vigorous PA was independently and inversely correlated with the expression of p16INK4a and p21Cip1 in the peripheral blood mononuclear cell (PBMCs) of adults with obesity; however, chronological age, body mass index, body fat, maximal oxygen consumption, light PA, sedentary behaviors, and sleep duration were not. More importantly, the 12-week PA intervention mitigated the elevated p16INK4a levels in PBMCs, though it showed no effect on p21Cip1 and senescence-associated secretory phenotypes. Taken together, physical inactivity is an independent determinant of premature senescence in immune cells, while the 12-week PA intervention is a promising strategy to alleviate premature immune senescence in adults with obesity.


Subject(s)
Cyclin-Dependent Kinase Inhibitor p16 , Immunosenescence , Leukocytes, Mononuclear , Humans , Cross-Sectional Studies , Exercise , Obesity , Pilot Projects , Adult
6.
Exp Cell Res ; 421(2): 113401, 2022 12 15.
Article in English | MEDLINE | ID: mdl-36306826

ABSTRACT

Leukemia is a type of blood cancer characterized by high genetic heterogeneity and fatality. While chemotherapy remains the primary form of treatment for leukemia, its effectiveness was profoundly diminished by the genetic heterogeneity and cytogenetic abnormalities of leukemic cells. Therefore, there is an unmet need to develop precision medicine for leukemia with distinct genetic backgrounds. Zebrafish (Danio rerio), a freshwater fish with exceptional feasibility in genome editing, is a powerful tool for rapid human cancer modeling. In the past decades, zebrafish have been adopted in modeling human leukemia, exploring the molecular mechanisms of underlying genetic abnormalities, and discovering novel therapeutic agents. Although many recurrent mutations of leukemia have been modeled in zebrafish for pathological study and drug discovery, its great potential in leukemia modeling was not yet fully exploited, particularly in precision medicine. In this review, we evaluated the current zebrafish models of leukemia/pre-leukemia and genetic techniques and discussed the potential of zebrafish models with novel techniques, which may contribute to the development of zebrafish as a disease model for precision medicine in treating leukemia.


Subject(s)
Leukemia , Neoplasms , Animals , Humans , Zebrafish/genetics , Precision Medicine , Disease Models, Animal , Leukemia/genetics , Leukemia/pathology
7.
Exp Mol Med ; 54(7): 973-987, 2022 07.
Article in English | MEDLINE | ID: mdl-35831435

ABSTRACT

Despite well-known systemic immune reactions in peripheral trauma, little is known about their roles in posttraumatic neurological disorders, such as anxiety, sickness, and cognitive impairment. Leukocyte invasion of the brain, a common denominator of systemic inflammation, is involved in neurological disorders that occur in peripheral inflammatory diseases, whereas the influences of peripheral leukocytes on the brain after peripheral trauma remain largely unclear. In this study, we found that leukocytes, largely macrophages, transiently invaded the brain of zebrafish larvae after peripheral trauma through vasculature-independent migration, which was a part of the systemic inflammation and was mediated by interleukin-1b (il1b). Notably, myeloid cells in the brain that consist of microglia and invading macrophages were implicated in posttraumatic anxiety-like behaviors, such as hyperactivity (restlessness) and thigmotaxis (avoidance), while a reduction in systemic inflammation or myeloid cells can rescue these behaviors. In addition, invading leukocytes together with microglia were found to be responsible for the clearance of apoptotic cells in the brain; however, they also removed the nonapoptotic cells, which suggested that phagocytes have dual roles in the brain after peripheral trauma. More importantly, a category of conserved proteins between zebrafish and humans or rodents that has been featured in systemic inflammation and neurological disorders was determined in the zebrafish brain after peripheral trauma, which supported that zebrafish is a translational model of posttraumatic neurological disorders. These findings depicted leukocyte invasion of the brain during systemic inflammation after peripheral trauma and its influences on the brain through il1b-dependent mechanisms.


Subject(s)
Macrophages , Zebrafish , Animals , Brain , Humans , Inflammation , Leukocytes
8.
Obesity (Silver Spring) ; 30(2): 407-423, 2022 02.
Article in English | MEDLINE | ID: mdl-35088557

ABSTRACT

OBJECTIVE: The aim of this study was to assess gut microbiota modifications after exercise in humans and animal models with obesity or type 2 diabetes and their role in exercise-induced weight loss. METHODS: A systematic search of six databases was conducted on July 31, 2021. The extracted data on body fat or body weight from human and animal studies were analyzed using random-effects meta-analysis. RESULTS: A total of 28 studies were included, with all studies reporting exercise-induced gut microbiota modifications; however, the modified taxa varied among studies. Proteobacteria was the only taxa reported to be altered by exercise in more than one human and one animal study. Taxa belonging to Firmicutes were the most responsive to exercise in humans and mice, whereas Proteobacteria taxa were the most responsive to exercise in rats. A meta-analysis was conducted to examine the weight-lowering effect of exercise based on data subgrouped by altered or unaltered α-diversity or ß-diversity. The association between the weight-lowering effect of exercise and altered ß-diversity was observed in humans with obesity but not in animals. CONCLUSIONS: These findings suggest that gut microbiota modifications contribute to exercise-induced weight loss in obesity; however, their precise contributions, especially those of taxon-level variations, remain to be investigated.


Subject(s)
Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Physical Conditioning, Animal , Animals , Mice , Obesity/therapy , Rats , Weight Loss
9.
Autophagy ; 17(5): 1222-1231, 2021 05.
Article in English | MEDLINE | ID: mdl-32286915

ABSTRACT

1-phenyl 2-thiourea (PTU) is a Tyr (tyrosinase) inhibitor that is extensively used to block pigmentation and improve optical transparency in zebrafish (Danio rerio) embryo. Here, we reported a previously undescribed effect of PTU on macroautophagy/autophagy in zebrafish embryos. Upon 0.003% PTU treatment, aberrant autophagosome and autolysosome formation, accumulation of lysosomes, and elevated autophagic flux were observed in various tissues and organs of zebrafish embryos, such as skin, brain, and muscle. Similar to PTU treatment, autophagic activation and lysosomal accumulation were also observed in the somatic tyr mutant zebrafish embryos, which suggest that Tyr inhibition may contribute to PTU-induced autophagic activation. Furthermore, we demonstrated that autophagy contributes to pigmentation inhibition, but is not essential to the PTU-induced pigmentation inhibition. With the involvement of autophagy in a wide range of physiological and pathological processes and the routine use of PTU in zebrafish research of autophagy-related processes, these observations raise a novel concern in autophagy-related studies using PTU-treated zebrafish embryos.Abbreviations: 3-MA: 3-methyladenine; Atg: autophagy-related; BSA: bovine serum albumin; CHT: caudal hematopoietic tissue; CQ: chloroquine; GFP: green fluorescent protein; hpf: hour-post-fertilization; Map1lc3/Lc3: microtubule-associated protein 1 light chain 3; NGS: normal goat serum; PtdIns3K: class III phosphatidylinositol 3-kinase; PTU: 1-phenyl 2-thiourea; RFP: red fluorescent protein; Sqstm1: sequestosome 1; tyr: tyrosinase.


Subject(s)
Autophagosomes/metabolism , Autophagy/drug effects , Thiourea/pharmacology , Animals , Autophagosomes/drug effects , Chloroquine/pharmacology , Class III Phosphatidylinositol 3-Kinases/metabolism , Lysosomes/drug effects , Lysosomes/metabolism , Thiourea/metabolism , Zebrafish/metabolism
10.
Aging Cell ; 20(1): e13294, 2021 01.
Article in English | MEDLINE | ID: mdl-33378138

ABSTRACT

Cellular senescence, a state of irreversible growth arrest triggered by various stressors, engages in a category of pathological processes, whereby senescent cells accumulate in mitotic tissues. Senolytics as novel medicine against aging and various diseases through the elimination of senescent cells has emerged rapidly in recent years. Exercise is a potent anti-aging and anti-chronic disease medicine, which has shown the capacity to lower the markers of cellular senescence over the past decade. However, whether exercise is a senolytic medicine for aging and various diseases remains unclear. Here, we have conducted a systematic review of the published literature studying the senolytic effects of exercise or physical activity on senescent cells under various states in both human and animal models. Exercise can reduce the markers of senescent cells in healthy humans, while it lowered the markers of senescent cells in obese but not healthy animals. The discrepancy between human and animal studies may be due to the relatively small volume of research and the variations in markers of senescent cells, types of cells/tissues, and health conditions. These findings suggest that exercise has senolytic properties under certain conditions, which warrant further investigations.


Subject(s)
Cellular Senescence/physiology , Exercise/physiology , Adolescent , Adult , Humans , Middle Aged , Young Adult
11.
Article in English | MEDLINE | ID: mdl-32825092

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic continues to pose profound challenges to society. Its spread has been mitigated through strategies including social distancing; however, this may result in the adoption of a sedentary lifestyle. This study aimed to investigate: (1) physical activity (PA) levels, sedentary behavior (SB), and sleep in young adults during the COVID-19 epidemic, and (2) the change in these behaviors before and during the pandemic. A total of 631 young adults (38.8% males) aged between 18 and 35 participated in the cross-sectional study and completed a one-off online survey relating to general information, PA, SB, and sleep. For the longitudinal study, PA, SB, and sleep data, obtained from 70 participants before and during the COVID-19 pandemic, were analyzed. Participants engaged in low PA, high SB, and long sleep duration during the COVID-19 pandemic. Moreover, a significant decline in PA while an increase in time spent in both SB and sleep was observed during the COVID-19 outbreak. The results of this study demonstrated a sedentary lifestyle in young adults during the COVID-19 pandemic, which will assist health policymakers and practitioners in the development of population specific health education and behavior interventions during this pandemic and for other future events.


Subject(s)
Coronavirus Infections/physiopathology , Pandemics , Pneumonia, Viral/physiopathology , Sedentary Behavior , Adolescent , Adult , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Cross-Sectional Studies , Female , Humans , Longitudinal Studies , Male , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , Sleep , Surveys and Questionnaires , Young Adult
12.
Appl Physiol Nutr Metab ; 43(3): 213-220, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29035687

ABSTRACT

The purpose of this study was to determine if acute intake of glutamine modulates homeostatic, hematologic, immune, and inflammatory responses to exhaustive exercise in the heat. Thirteen healthy, untrained young men participated in this randomized, double-blind, placebo-controlled, crossover study. They served as their own control and completed 2 trials of treadmill exercise at 40% maximal oxygen uptake to exhaustion in a hot environment (temperature, 38.0 ± 1.0 °C; relative humidity, 60.0% ± 5.0%; oxygen, 20.8%) following placebo (PLA) and glutamine (GLN) consumption. Heart rate, gastrointestinal temperature, forehead temperature, the rating of perceived exertion, and body weight were measured. Blood samples were collected before and after exercise. After exhaustive exercise in the heat (PLA vs. GLN: 42.0 ± 9.5 vs. 39.6 ± 7.8 min, p > 0.05), significant changes in homeostatic, hematologic, and immune parameters (elevated natural killer (NK) cells and neutrophils, and reduced CD4+/CD8+ ratio and CD19+ lymphocytes) were found in the control group owing to the time effect (p < 0.05). Moreover, a condition × time interaction effect was observed for the absolute count of CD3+ (F = 4.26, p < 0.05) and CD3+CD8+ T lymphocytes (F = 4.27, p < 0.05), which were elevated following acute glutamine intervention. While a potential interaction effect was also observed for the absolute count of CD3+CD4+ T lymphocytes (F = 3.21, p = 0.08), no condition or interaction effects were found for any other outcome measures. The results of this study suggest that acute glutamine ingestion evokes CD3+ and CD3+CD8+ T lymphocytosis but does not modulate neutrophil and NK cell leukocytosis and immune disturbances after exhaustive exercise in the heat.


Subject(s)
Exercise , Glutamine/pharmacology , Hot Temperature , Lymphocytes/physiology , Cross-Over Studies , Dietary Supplements , Double-Blind Method , Fatigue , Homeostasis , Humans , Male , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...